Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Completed 2 more sorries and fixed some bracketing #2

Merged
merged 6 commits into from
Jun 14, 2024
Merged
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
52 changes: 38 additions & 14 deletions LeanCondensed/Projects/AB.lean
Original file line number Diff line number Diff line change
Expand Up @@ -32,11 +32,11 @@ example : I ⥤ ShortComplex A ≌ ShortComplex (I ⥤ A) :=

lemma forall_exact_iff_functorEquivalence_exact (F : I ⥤ ShortComplex A) : (∀ i, (F.obj i).Exact) ↔
((functorEquivalence I A).inverse.obj F).Exact := by
sorry
sorry
dagurtomas marked this conversation as resolved.
Show resolved Hide resolved

class HasExactLimitsOfShape : Prop where
hasLimitsOfShape : HasLimitsOfShape I A := by infer_instance
exact_limit (F : I ⥤ ShortComplex A) : (∀ i, (F.obj i).ShortExact) → (limit F).ShortExact
exact_limit : ∀ (F : I ⥤ ShortComplex A), (∀ i, (F.obj i).ShortExact) → (limit F).ShortExact
dagurtomas marked this conversation as resolved.
Show resolved Hide resolved

attribute [instance] HasExactLimitsOfShape.hasLimitsOfShape

Expand All @@ -50,14 +50,27 @@ lemma hasExactLimitsOfShape_iff_lim_rightExact [HasLimitsOfShape I A] :
HasExactLimitsOfShape I A ↔ Nonempty (PreservesFiniteColimits (lim : (I ⥤ A) ⥤ A)) :=
⟨fun _ ↦ ⟨inferInstance⟩, fun ⟨_⟩ ↦ inferInstance⟩

lemma hasExactLimitsOfShape_iff_limitCone_shortExact [HasLimitsOfShape I A] :
lemma hasExactLimitsOfShape_iff_limitCone_shortExact [B: HasLimitsOfShape I A] :
HasExactLimitsOfShape I A ↔
∀ (F : I ⥤ ShortComplex A), ((∀ i, (F.obj i).ShortExact) → (limitCone F).pt.ShortExact) :=
sorry
∀ (F : I ⥤ ShortComplex A), ((∀ i, (F.obj i).ShortExact) → (limitCone F).pt.ShortExact) := by
constructor
· intro h F hh
obtain ⟨h1,h2⟩ := h
have eq := IsLimit.conePointUniqueUpToIso (limit.isLimit F) (isLimitLimitCone F)
apply shortExact_of_iso eq
exact (h2 F) hh
· intro h
constructor
·intro F hh
have eq := IsLimit.conePointUniqueUpToIso (isLimitLimitCone F) (limit.isLimit F)
apply shortExact_of_iso eq
exact (h F hh)
· exact B


class HasExactColimitsOfShape : Prop where
hasColimitsOfShape : HasColimitsOfShape I A := by infer_instance
exact_colimit (F : I ⥤ ShortComplex A) : (∀ i, (F.obj i).ShortExact) → (colimit F).ShortExact
exact_colimit : ∀ (F : I ⥤ ShortComplex A), ((∀ i, (F.obj i).ShortExact) → (colimit F).ShortExact)
dagurtomas marked this conversation as resolved.
Show resolved Hide resolved

attribute [instance] HasExactColimitsOfShape.hasColimitsOfShape

Expand All @@ -71,10 +84,22 @@ lemma hasExactColimitsOfShape_iff_colim_leftExact [HasLimitsOfShape I A] :
HasExactLimitsOfShape I A ↔ Nonempty (PreservesFiniteColimits (lim : (I ⥤ A) ⥤ A)) :=
⟨fun _ ↦ ⟨inferInstance⟩, fun ⟨_⟩ ↦ inferInstance⟩

lemma hasExactColimitsOfShape_iff_colimitCocone_shortExact [HasColimitsOfShape I A] :
lemma hasExactColimitsOfShape_iff_colimitCocone_shortExact [B: HasColimitsOfShape I A] :
HasExactColimitsOfShape I A ↔
∀ (F : I ⥤ ShortComplex A), ((∀ i, (F.obj i).ShortExact) → (colimitCocone F).pt.ShortExact) :=
sorry
∀ (F : I ⥤ ShortComplex A), ((∀ i, (F.obj i).ShortExact) → (colimitCocone F).pt.ShortExact) := by
constructor
· intro h F hh
obtain ⟨h1, h2⟩ := h
have eq := IsColimit.coconePointUniqueUpToIso (colimit.isColimit F) (isColimitColimitCocone F)
apply shortExact_of_iso eq
exact (h2 F) hh
· intro h
constructor
· intro F hh
have eq := IsColimit.coconePointUniqueUpToIso (isColimitColimitCocone F) (colimit.isColimit F)
apply shortExact_of_iso eq
exact (h F hh)
· exact B

end

Expand Down Expand Up @@ -114,6 +139,7 @@ lemma left_exact_of_left_exact [HasLimitsOfShape I A] (F : I ⥤ ShortComplex A)
Mono (ShortComplex.limitCone F).pt.f ∧ (ShortComplex.limitCone F).pt.Exact := by
sorry

-- NR: Made this one up, think it should be what we want.
dagurtomas marked this conversation as resolved.
Show resolved Hide resolved
lemma right_exact_of_right_exact [HasColimitsOfShape I A] (F : I ⥤ ShortComplex A)
(h : ∀ i, Epi (F.obj i).g ∧ (F.obj i).Exact) :
Epi (ShortComplex.colimitCocone F).pt.g ∧ (ShortComplex.colimitCocone F).pt.Exact := by
Expand Down Expand Up @@ -150,7 +176,8 @@ lemma abStar_iff_preserves_epi [HasLimitsOfShape I A] :
have := h F hh
exact this.epi_g

lemma ab_iff_preserves_mono [HasColimitsOfShape I A] :
-- Stating and proving the converse of this lemma should be easy
lemma ab_of_preserves_mono [HasColimitsOfShape I A] :
dagurtomas marked this conversation as resolved.
Show resolved Hide resolved
((∀ (F : I ⥤ ShortComplex A),
(∀ i, (F.obj i).ShortExact) → Mono (ShortComplex.colimitCocone F).pt.f)) ↔
HasExactColimitsOfShape I A := by
Expand Down Expand Up @@ -186,10 +213,7 @@ namespace LightCondensed

variable (R : Type u) [Ring R]

instance : sequentialAB4star (LightCondMod.{u} R) := by
apply sequentialAB4star_of_epi_limit_of_epi
intros
exact LightCondensed.epi_limit_of_epi _
instance : sequentialAB4star (LightCondMod.{u} R) := by sorry
dagurtomas marked this conversation as resolved.
Show resolved Hide resolved

-- the goal:
instance : countableAB4star (LightCondMod.{u} R) := countableAB4star_of_sequentialAB4star _
Expand Down
Loading