Skip to content

Implementation of OpenAI's 'Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets' paper.

License

Notifications You must be signed in to change notification settings

danielmamay/grokking

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Grokking

An implementation of the OpenAI 'Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets' paper in PyTorch.

Installation

  • Clone the repo and cd into it:
    git clone https://github.com/danielmamay/grokking.git
    cd grokking
  • Use Python 3.9 or later:
    conda create -n grokking python=3.9
    conda activate grokking
    pip install -r requirements.txt

Usage

The project uses Weights & Biases to keep track of experiments. Run wandb login to use the online dashboard, or wandb offline to store the data on your local machine.

  • To run a single experiment using the CLI:

    wandb login
    python grokking/cli.py
  • To run a grid search using W&B Sweeps:

    wandb sweep sweep.yaml
    wandb agent {entity}/grokking/{sweep_id}

References

Code:

Paper:

About

Implementation of OpenAI's 'Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets' paper.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages