Skip to content

dankkom/inmet-bdmep-data

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

48 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

INMET BDMEP data

Python package to download and read INMET's BDMEP data.

Data source: https://portal.inmet.gov.br/dadoshistoricos

fetch.py: Raw files fetcher

Script to fetch raw data files from INMET's BDMEP site.

Usage:

usage: fetch.py [-h] -data-dir DESTDIR years [years ...]

Download INMET BDMEP data

positional arguments:
  years               Years to download

options:
  -h, --help          show this help message and exit
  --data-dir DESTDIR  Destination directory (default: None)

reader

Module to read INMET's BDMEP raw data files.

Example:

from inmet_bdmep.reader import read_zipfile

filepath = "inmet-bdmep_2022_20220712.zip"
df = read_zipfile(filepath)
# 100%|██████████████████████████████████████| 573/573 [01:06<00:00,  8.65it/s]
print(df)
#      hora  precipitacao  pressao_atmosferica  pressao_atmosferica_maxima  pressao_atmosferica_minima  ...  codigo_wmo   latitude  longitude  altitude  data_fundacao
#0        0           0.0                902.9                       902.9                       902.1  ...        A898 -27.388611 -51.215833     963.0     2019-02-15
#1        1           0.0                903.4                       903.4                       902.9  ...        A898 -27.388611 -51.215833     963.0     2019-02-15
#2        2           0.0                903.7                       903.7                       903.3  ...        A898 -27.388611 -51.215833     963.0     2019-02-15
#3        3           0.0                903.4                       903.7                       903.4  ...        A898 -27.388611 -51.215833     963.0     2019-02-15
#4        4           0.0                903.2                       903.4                       903.1  ...        A898 -27.388611 -51.215833     963.0     2019-02-15
#...    ...           ...                  ...                         ...                         ...  ...         ...        ...        ...       ...            ...
#4339    19           0.0                910.3                       910.5                       910.3  ...        A898 -27.388611 -51.215833     963.0     2019-02-15
#4340    20           0.0                910.2                       910.4                       910.1  ...        A898 -27.388611 -51.215833     963.0     2019-02-15
#4341    21           0.0                910.3                       910.3                       910.1  ...        A898 -27.388611 -51.215833     963.0     2019-02-15
#4342    22           0.0                910.4                       910.4                       910.1  ...        A898 -27.388611 -51.215833     963.0     2019-02-15
#4343    23           0.0                910.6                       910.7                       910.4  ...        A898 -27.388611 -51.215833     963.0     2019-02-15
#
#[4327 rows x 29 columns]