Library for performing queries and transformations on GeoJSON data (with emphasis on support for abstract graph representations).
The package is available on PyPI:
python -m pip install geoql
The library can be imported in the usual ways:
import geoql from geoql import geoql
An example of usage is provided below:
import geojson from geoql import geoql import geoleaflet import requests url = 'https://raw.githubusercontent.com/Data-Mechanics/geoql/master/examples/' # Boston ZIP Codes regions. z = geoql.loads(requests.get(url + 'example_zips.geojson').text, encoding="latin-1") # Extract of street data. g = geoql.loads(requests.get(url + 'example_extract.geojson').text, encoding="latin-1") g = g.properties_null_remove()\ .tags_parse_str_to_dict()\ .keep_by_property({"highway": {"$in": ["residential", "secondary", "tertiary"]}}) g = g.keep_within_radius((42.3551, -71.0656), 0.75, 'miles') # 0.75 miles from Boston Common. g = g.keep_that_intersect(z) # Only those entries found in a Boston ZIP Code regions. g = g.node_edge_graph() # Converted into a graph with nodes and edges. g.dump(open('example_extract.geojson', 'w')) open('leaflet.html', 'w').write(geoleaflet.html(g)) # Create visualization.
An alternative example of usage is provided below (the below usage is deprecated but will remain supported):
import geojson import geoql import geoleaflet import requests url = 'https://raw.githubusercontent.com/Data-Mechanics/geoql/master/examples/' # Boston ZIP Codes regions. z = geojson.loads(requests.get(url + 'example_zips.geojson').text, encoding="latin-1") # Extract of street data. g = geojson.loads(requests.get(url + 'example_extract.geojson').text, encoding="latin-1") g = geoql.features_properties_null_remove(g) g = geoql.features_tags_parse_str_to_dict(g) g = geoql.features_keep_by_property(g, {"highway": {"$in": ["residential", "secondary", "tertiary"]}}) g = geoql.features_keep_within_radius(g, (42.3551, -71.0656), 0.75, 'miles') # Within 0.75 of Boston Common. g = geoql.features_keep_intersecting_features(g, z) # Only those entries found in a Boston ZIP Code regions. g = geoql.features_node_edge_graph(g) # Converted into a graph with nodes and edges. open('example_extract.geojson', 'w').write(geojson.dumps(g)) open('leaflet.html', 'w').write(geoleaflet.html(g)) # Create visualization.