Skip to content

dawei-liang/Privacy-Sensing

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

24 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Privacy-Sensing

Split audio: https://unix.stackexchange.com/questions/280767/how-do-i-split-an-audio-file-into-multiple

Audio IO and using the proposed frame processing methods on audio data: wav_read.py

Load user field data and saved the processed data as class-based: data_preparation_user.py (wav_read.py, check_dir.py)

Load class-based data (option 0 from data_preparation_user.py) and saved the processed data as fold-based: concatenate_class_data.py (wav_read.py, check_dir.py)

Load (processed) user data and do mfcc extraction, 5-fold cross validation: train_test_user.py (wav_read.py)

==============================================================

Enhance web collected audio (format conversion and volumn change): audio_enhancement.py

Calculate Mechanical Turk results: read_mturk_files.py

Test an audio clip with privacy protection: wav_test.py (wav_read.py, pca.py)

==============================================================

Partially adopted from: https://github.com/anuragkr90/weak_feature_extractor, by Kumar et al., ICASSP 18

Load the esc wav files, degrade, and save the degraded mfcc frames(in csv) or full wav clips(in wav): load_esc.py (wav_read.py, check_dirs.py)

Load processed wav, compute segment spectrogram, extract embedding features, and save as csv (require torch): feat_extractor.py (extractor.py, network_architectures.py)

Evaluation for esc features:

for embedding features from transfer leanring: train_test_esc_tl.py (check_dirs.py)

for mfcc features: train_test_esc_mfcc.py (check_dirs.py)

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages