Skip to content

Commit

Permalink
Add batch context object to microbatch jinja context (#11031) (#11064)
Browse files Browse the repository at this point in the history
* Add `batch_id` to jinja context of microbatch batches

* Add changie doc

* Update `format_batch_start` to assume `batch_start` is always provided

* Add "runtime only" property `batch_context` to `ModelNode`

By it being "runtime only" we mean that it doesn't exist on the artifact
and thus won't be written out to the manifest artifact.

* Begin populating `batch_context` during materialization execution for microbatch batches

* Fix circular import

* Fixup MicrobatchBuilder.batch_id property method

* Ensure MicrobatchModelRunner doesn't double compile batches

We were compiling the node for each batch _twice_. Besides making microbatch
models more expensive than they needed to be, double compiling wasn't
causing any issue. However the first compilation was happening _before_ we
had added the batch context information to the model node for the batch. This
was leading to models which try to access the `batch_context` information on the
model to blow up, which was undesirable. As such, we've now gone and skipped
the first compilation. We've done this similar to how SavedQuery nodes skip
compilation.

* Add `__post_serialize__` method to `BatchContext` to ensure correct dict shape

This is weird, but necessary, I apologize. Mashumaro handles the
dictification of this class via a compile time generated `to_dict`
method based off of the _typing_ of th class. By default `datetime`
types are converted to strings. We don't want that, we want them to
stay datetimes.

* Update tests to check for `batch_context`

* Update `resolve_event_time_filter` to use new `batch_context`

* Stop testing for batchless compiled code for microbatch models

In 45daec7 we stopped an extra compilation
that was happening per batch prior to the batch_context being loaded. Stopping
this extra compilation means that compiled sql for the microbatch model without
the event time filter / batch context is no longer produced. We have discussed
this and _believe_ it is okay given that this is a new node type that has not
hit GA yet.

* Rename `ModelNode.batch_context` to `ModelNode.batch`

* Rename `build_batch_context` to `build_jinja_context_for_batch`

The name `build_batch_context` was confusing as
1) We have a `BatchContext` object, which the method was not building
2) The method builds the jinja context for the batch
As such it felt appropriate to rename the method to more accurately
communicate what it does.

* Rename test macro `invalid_batch_context_macro_sql` to `invalid_batch_jinja_context_macro_sql`

This rename was to make it more clear that the jinja context for a
batch was being checked, as a batch_context has a slightly different
connotation.

* Update changie doc

(cherry picked from commit c3d87b8)

Co-authored-by: Quigley Malcolm <QMalcolm@users.noreply.github.com>
  • Loading branch information
github-actions[bot] and QMalcolm authored Nov 27, 2024
1 parent 65f05e0 commit 6a36444
Show file tree
Hide file tree
Showing 8 changed files with 90 additions and 41 deletions.
6 changes: 6 additions & 0 deletions .changes/unreleased/Features-20241121-125630.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
kind: Features
body: Add `batch` context object to model jinja context
time: 2024-11-21T12:56:30.715473-06:00
custom:
Author: QMalcolm
Issue: "11025"
5 changes: 3 additions & 2 deletions core/dbt/context/providers.py
Original file line number Diff line number Diff line change
Expand Up @@ -244,9 +244,10 @@ def resolve_event_time_filter(self, target: ManifestNode) -> Optional[EventTimeF
and self.model.config.materialized == "incremental"
and self.model.config.incremental_strategy == "microbatch"
and self.manifest.use_microbatch_batches(project_name=self.config.project_name)
and self.model.batch is not None
):
start = self.model.config.get("__dbt_internal_microbatch_event_time_start")
end = self.model.config.get("__dbt_internal_microbatch_event_time_end")
start = self.model.batch.event_time_start
end = self.model.batch.event_time_end

if start is not None or end is not None:
event_time_filter = EventTimeFilter(
Expand Down
22 changes: 22 additions & 0 deletions core/dbt/contracts/graph/nodes.py
Original file line number Diff line number Diff line change
Expand Up @@ -93,6 +93,7 @@
ConstraintType,
ModelLevelConstraint,
)
from dbt_common.dataclass_schema import dbtClassMixin
from dbt_common.events.contextvars import set_log_contextvars
from dbt_common.events.functions import warn_or_error

Expand Down Expand Up @@ -442,9 +443,30 @@ def resource_class(cls) -> Type[HookNodeResource]:
return HookNodeResource


@dataclass
class BatchContext(dbtClassMixin):
id: str
event_time_start: datetime
event_time_end: datetime

def __post_serialize__(self, data, context):
# This is insane, but necessary, I apologize. Mashumaro handles the
# dictification of this class via a compile time generated `to_dict`
# method based off of the _typing_ of th class. By default `datetime`
# types are converted to strings. We don't want that, we want them to
# stay datetimes.
# Note: This is safe because the `BatchContext` isn't part of the artifact
# and thus doesn't get written out.
new_data = super().__post_serialize__(data, context)
new_data["event_time_start"] = self.event_time_start
new_data["event_time_end"] = self.event_time_end
return new_data


@dataclass
class ModelNode(ModelResource, CompiledNode):
previous_batch_results: Optional[BatchResults] = None
batch: Optional[BatchContext] = None
_has_this: Optional[bool] = None

def __post_serialize__(self, dct: Dict, context: Optional[Dict] = None):
Expand Down
25 changes: 12 additions & 13 deletions core/dbt/materializations/incremental/microbatch.py
Original file line number Diff line number Diff line change
Expand Up @@ -100,25 +100,25 @@ def build_batches(self, start: datetime, end: datetime) -> List[BatchType]:

return batches

def build_batch_context(self, incremental_batch: bool) -> Dict[str, Any]:
def build_jinja_context_for_batch(self, incremental_batch: bool) -> Dict[str, Any]:
"""
Create context with entries that reflect microbatch model + incremental execution state
Assumes self.model has been (re)-compiled with necessary batch filters applied.
"""
batch_context: Dict[str, Any] = {}
jinja_context: Dict[str, Any] = {}

# Microbatch model properties
batch_context["model"] = self.model.to_dict()
batch_context["sql"] = self.model.compiled_code
batch_context["compiled_code"] = self.model.compiled_code
jinja_context["model"] = self.model.to_dict()
jinja_context["sql"] = self.model.compiled_code
jinja_context["compiled_code"] = self.model.compiled_code

# Add incremental context variables for batches running incrementally
if incremental_batch:
batch_context["is_incremental"] = lambda: True
batch_context["should_full_refresh"] = lambda: False
jinja_context["is_incremental"] = lambda: True
jinja_context["should_full_refresh"] = lambda: False

return batch_context
return jinja_context

@staticmethod
def offset_timestamp(timestamp: datetime, batch_size: BatchSize, offset: int) -> datetime:
Expand Down Expand Up @@ -193,12 +193,11 @@ def truncate_timestamp(timestamp: datetime, batch_size: BatchSize) -> datetime:
return truncated

@staticmethod
def format_batch_start(
batch_start: Optional[datetime], batch_size: BatchSize
) -> Optional[str]:
if batch_start is None:
return batch_start
def batch_id(start_time: datetime, batch_size: BatchSize) -> str:
return MicrobatchBuilder.format_batch_start(start_time, batch_size).replace("-", "")

@staticmethod
def format_batch_start(batch_start: datetime, batch_size: BatchSize) -> str:
return str(
batch_start.date() if (batch_start and batch_size != BatchSize.hour) else batch_start
)
Expand Down
25 changes: 19 additions & 6 deletions core/dbt/task/run.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,7 @@
from dbt.config import RuntimeConfig
from dbt.context.providers import generate_runtime_model_context
from dbt.contracts.graph.manifest import Manifest
from dbt.contracts.graph.nodes import HookNode, ModelNode, ResultNode
from dbt.contracts.graph.nodes import BatchContext, HookNode, ModelNode, ResultNode
from dbt.events.types import (
GenericExceptionOnRun,
LogHookEndLine,
Expand Down Expand Up @@ -341,6 +341,13 @@ def __init__(self, config, adapter, node, node_index: int, num_nodes: int):
self.batches: Dict[int, BatchType] = {}
self.relation_exists: bool = False

def compile(self, manifest: Manifest):
# The default compile function is _always_ called. However, we do our
# compilation _later_ in `_execute_microbatch_materialization`. This
# meant the node was being compiled _twice_ for each batch. To get around
# this, we've overriden the default compile method to do nothing
return self.node

def set_batch_idx(self, batch_idx: int) -> None:
self.batch_idx = batch_idx

Expand All @@ -353,7 +360,7 @@ def set_batches(self, batches: Dict[int, BatchType]) -> None:
def describe_node(self) -> str:
return f"{self.node.language} microbatch model {self.get_node_representation()}"

def describe_batch(self, batch_start: Optional[datetime]) -> str:
def describe_batch(self, batch_start: datetime) -> str:
# Only visualize date if batch_start year/month/day
formatted_batch_start = MicrobatchBuilder.format_batch_start(
batch_start, self.node.config.batch_size
Expand Down Expand Up @@ -530,10 +537,16 @@ def _execute_microbatch_materialization(
# call materialization_macro to get a batch-level run result
start_time = time.perf_counter()
try:
# Set start/end in context prior to re-compiling
# LEGACY: Set start/end in context prior to re-compiling (Will be removed for 1.10+)
# TODO: REMOVE before 1.10 GA
model.config["__dbt_internal_microbatch_event_time_start"] = batch[0]
model.config["__dbt_internal_microbatch_event_time_end"] = batch[1]

# Create batch context on model node prior to re-compiling
model.batch = BatchContext(
id=MicrobatchBuilder.batch_id(batch[0], model.config.batch_size),
event_time_start=batch[0],
event_time_end=batch[1],
)
# Recompile node to re-resolve refs with event time filters rendered, update context
self.compiler.compile_node(
model,
Expand All @@ -544,10 +557,10 @@ def _execute_microbatch_materialization(
),
)
# Update jinja context with batch context members
batch_context = microbatch_builder.build_batch_context(
jinja_context = microbatch_builder.build_jinja_context_for_batch(
incremental_batch=self.relation_exists
)
context.update(batch_context)
context.update(jinja_context)

# Materialize batch and cache any materialized relations
result = MacroGenerator(
Expand Down
38 changes: 23 additions & 15 deletions tests/functional/microbatch/test_microbatch.py
Original file line number Diff line number Diff line change
Expand Up @@ -64,8 +64,8 @@
select * from {{ ref('microbatch_model') }}
"""

invalid_batch_context_macro_sql = """
{% macro check_invalid_batch_context() %}
invalid_batch_jinja_context_macro_sql = """
{% macro check_invalid_batch_jinja_context() %}
{% if model is not mapping %}
{{ exceptions.raise_compiler_error("`model` is invalid: expected mapping type") }}
Expand All @@ -83,9 +83,9 @@
"""

microbatch_model_with_context_checks_sql = """
{{ config(pre_hook="{{ check_invalid_batch_context() }}", materialized='incremental', incremental_strategy='microbatch', unique_key='id', event_time='event_time', batch_size='day', begin=modules.datetime.datetime(2020, 1, 1, 0, 0, 0)) }}
{{ config(pre_hook="{{ check_invalid_batch_jinja_context() }}", materialized='incremental', incremental_strategy='microbatch', unique_key='id', event_time='event_time', batch_size='day', begin=modules.datetime.datetime(2020, 1, 1, 0, 0, 0)) }}
{{ check_invalid_batch_context() }}
{{ check_invalid_batch_jinja_context() }}
select * from {{ ref('input_model') }}
"""

Expand Down Expand Up @@ -404,7 +404,7 @@ class TestMicrobatchJinjaContext(BaseMicrobatchTest):

@pytest.fixture(scope="class")
def macros(self):
return {"check_batch_context.sql": invalid_batch_context_macro_sql}
return {"check_batch_jinja_context.sql": invalid_batch_jinja_context_macro_sql}

@pytest.fixture(scope="class")
def models(self):
Expand Down Expand Up @@ -498,6 +498,13 @@ def test_run_with_event_time(self, project):
{{ config(materialized='incremental', incremental_strategy='microbatch', unique_key='id', event_time='event_time', batch_size='day', begin=modules.datetime.datetime(2020, 1, 1, 0, 0, 0)) }}
{{ log("start: "~ model.config.__dbt_internal_microbatch_event_time_start, info=True)}}
{{ log("end: "~ model.config.__dbt_internal_microbatch_event_time_end, info=True)}}
{% if model.batch %}
{{ log("batch.event_time_start: "~ model.batch.event_time_start, info=True)}}
{{ log("batch.event_time_end: "~ model.batch.event_time_end, info=True)}}
{{ log("batch.id: "~ model.batch.id, info=True)}}
{{ log("start timezone: "~ model.batch.event_time_start.tzinfo, info=True)}}
{{ log("end timezone: "~ model.batch.event_time_end.tzinfo, info=True)}}
{% endif %}
select * from {{ ref('input_model') }}
"""

Expand All @@ -516,12 +523,23 @@ def test_run_with_event_time_logs(self, project):

assert "start: 2020-01-01 00:00:00+00:00" in logs
assert "end: 2020-01-02 00:00:00+00:00" in logs
assert "batch.event_time_start: 2020-01-01 00:00:00+00:00" in logs
assert "batch.event_time_end: 2020-01-02 00:00:00+00:00" in logs
assert "batch.id: 20200101" in logs
assert "start timezone: UTC" in logs
assert "end timezone: UTC" in logs

assert "start: 2020-01-02 00:00:00+00:00" in logs
assert "end: 2020-01-03 00:00:00+00:00" in logs
assert "batch.event_time_start: 2020-01-02 00:00:00+00:00" in logs
assert "batch.event_time_end: 2020-01-03 00:00:00+00:00" in logs
assert "batch.id: 20200102" in logs

assert "start: 2020-01-03 00:00:00+00:00" in logs
assert "end: 2020-01-03 13:57:00+00:00" in logs
assert "batch.event_time_start: 2020-01-03 00:00:00+00:00" in logs
assert "batch.event_time_end: 2020-01-03 13:57:00+00:00" in logs
assert "batch.id: 20200103" in logs


microbatch_model_failing_incremental_partition_sql = """
Expand Down Expand Up @@ -675,16 +693,6 @@ def test_run_with_event_time(self, project):
with patch_microbatch_end_time("2020-01-03 13:57:00"):
run_dbt(["run"])

# Compiled paths - compiled model without filter only
assert read_file(
project.project_root,
"target",
"compiled",
"test",
"models",
"microbatch_model.sql",
)

# Compiled paths - batch compilations
assert read_file(
project.project_root,
Expand Down
1 change: 1 addition & 0 deletions tests/unit/contracts/graph/test_manifest.py
Original file line number Diff line number Diff line change
Expand Up @@ -96,6 +96,7 @@
"deprecation_date",
"defer_relation",
"time_spine",
"batch",
}
)

Expand Down
9 changes: 4 additions & 5 deletions tests/unit/materializations/incremental/test_microbatch.py
Original file line number Diff line number Diff line change
Expand Up @@ -489,11 +489,11 @@ def test_build_batches(self, microbatch_model, start, end, batch_size, expected_
assert len(actual_batches) == len(expected_batches)
assert actual_batches == expected_batches

def test_build_batch_context_incremental_batch(self, microbatch_model):
def test_build_jinja_context_for_incremental_batch(self, microbatch_model):
microbatch_builder = MicrobatchBuilder(
model=microbatch_model, is_incremental=True, event_time_start=None, event_time_end=None
)
context = microbatch_builder.build_batch_context(incremental_batch=True)
context = microbatch_builder.build_jinja_context_for_batch(incremental_batch=True)

assert context["model"] == microbatch_model.to_dict()
assert context["sql"] == microbatch_model.compiled_code
Expand All @@ -502,11 +502,11 @@ def test_build_batch_context_incremental_batch(self, microbatch_model):
assert context["is_incremental"]() is True
assert context["should_full_refresh"]() is False

def test_build_batch_context_incremental_batch_false(self, microbatch_model):
def test_build_jinja_context_for_incremental_batch_false(self, microbatch_model):
microbatch_builder = MicrobatchBuilder(
model=microbatch_model, is_incremental=True, event_time_start=None, event_time_end=None
)
context = microbatch_builder.build_batch_context(incremental_batch=False)
context = microbatch_builder.build_jinja_context_for_batch(incremental_batch=False)

assert context["model"] == microbatch_model.to_dict()
assert context["sql"] == microbatch_model.compiled_code
Expand Down Expand Up @@ -605,7 +605,6 @@ def test_truncate_timestamp(self, timestamp, batch_size, expected_timestamp):
@pytest.mark.parametrize(
"batch_size,batch_start,expected_formatted_batch_start",
[
(None, None, None),
(BatchSize.year, datetime(2020, 1, 1, 1), "2020-01-01"),
(BatchSize.month, datetime(2020, 1, 1, 1), "2020-01-01"),
(BatchSize.day, datetime(2020, 1, 1, 1), "2020-01-01"),
Expand Down

0 comments on commit 6a36444

Please sign in to comment.