-
Notifications
You must be signed in to change notification settings - Fork 78
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Added meaningful error if retrieving nil val from layer. Fixes #386
WIP #386 Added googlenet-setters for testing error messages WIP #386 Commented out tacking in extra values
- Loading branch information
Showing
3 changed files
with
96 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,83 @@ | ||
-- Copy of googlenet.lua which uses setters (the other googlenet has them removed) | ||
require 'nn' | ||
nGPU = 10 | ||
local function inception(input_size, config) | ||
local concat = nn.Concat(2) | ||
if config[1][1] ~= 0 then | ||
local conv1 = nn.Sequential() | ||
conv1:add(nn.SpatialConvolution(input_size, config[1][1],1,1,1,1)):add(nn.ReLU(true)) | ||
concat:add(conv1) | ||
end | ||
|
||
local conv3 = nn.Sequential() | ||
conv3:add(nn.SpatialConvolution( input_size, config[2][1],1,1,1,1)):add(nn.ReLU(true)) | ||
conv3:add(nn.SpatialConvolution(config[2][1], config[2][2],3,3,1,1,1,1)):add(nn.ReLU(true)) | ||
concat:add(conv3) | ||
|
||
local conv3xx = nn.Sequential() | ||
conv3xx:add(nn.SpatialConvolution( input_size, config[3][1],1,1,1,1)):add(nn.ReLU(true)) | ||
conv3xx:add(nn.SpatialConvolution(config[3][1], config[3][2],3,3,1,1,1,1)):add(nn.ReLU(true)) | ||
conv3xx:add(nn.SpatialConvolution(config[3][2], config[3][2],3,3,1,1,1,1)):add(nn.ReLU(true)) | ||
concat:add(conv3xx) | ||
|
||
local pool = nn.Sequential() | ||
pool:add(nn.SpatialZeroPadding(1,1,1,1)) -- remove after getting nn R2 into fbcode | ||
if config[4][1] == 'max' then | ||
pool:add(nn.SpatialMaxPooling(3,3,1,1):ceil()) | ||
elseif config[4][1] == 'avg' then | ||
pool:add(nn.SpatialAveragePooling(3,3,1,1):ceil()) | ||
else | ||
error('Unknown pooling') | ||
end | ||
if config[4][2] ~= 0 then | ||
pool:add(nn.SpatialConvolution(input_size, config[4][2],1,1,1,1)):add(nn.ReLU(true)) | ||
end | ||
concat:add(pool) | ||
|
||
return concat | ||
end | ||
|
||
local features = nn.Sequential() | ||
features:add(nn.SpatialConvolution(3,64,7,7,2,2,3,3)):add(nn.ReLU(true)) | ||
features:add(nn.SpatialMaxPooling(3,3,2,2):ceil()) | ||
features:add(nn.SpatialConvolution(64,64,1,1)):add(nn.ReLU(true)) | ||
features:add(nn.SpatialConvolution(64,192,3,3,1,1,1,1)):add(nn.ReLU(true)) | ||
features:add(nn.SpatialMaxPooling(3,3,2,2):ceil()) | ||
features:add(inception( 192, {{ 64},{ 64, 64},{ 64, 96},{'avg', 32}})) -- 3(a) | ||
features:add(inception( 256, {{ 64},{ 64, 96},{ 64, 96},{'avg', 64}})) -- 3(b) | ||
features:add(inception( 320, {{ 0},{128,160},{ 64, 96},{'max', 0}})) -- 3(c) | ||
features:add(nn.SpatialConvolution(576,576,2,2,2,2)) | ||
features:add(inception( 576, {{224},{ 64, 96},{ 96,128},{'avg',128}})) -- 4(a) | ||
features:add(inception( 576, {{192},{ 96,128},{ 96,128},{'avg',128}})) -- 4(b) | ||
features:add(inception( 576, {{160},{128,160},{128,160},{'avg', 96}})) -- 4(c) | ||
features:add(inception( 576, {{ 96},{128,192},{160,192},{'avg', 96}})) -- 4(d) | ||
|
||
local main_branch = nn.Sequential() | ||
main_branch:add(inception( 576, {{ 0},{128,192},{192,256},{'max', 0}})) -- 4(e) | ||
main_branch:add(nn.SpatialConvolution(1024,1024,2,2,2,2)) | ||
main_branch:add(inception(1024, {{352},{192,320},{160,224},{'avg',128}})) -- 5(a) | ||
main_branch:add(inception(1024, {{352},{192,320},{192,224},{'max',128}})) -- 5(b) | ||
main_branch:add(nn.SpatialAveragePooling(7,7,1,1)) | ||
main_branch:add(nn.View(1024):setNumInputDims(3)) | ||
main_branch:add(nn.Linear(1024,nClasses)) | ||
main_branch:add(nn.LogSoftMax()) | ||
|
||
-- add auxillary classifier here (thanks to Christian Szegedy for the details) | ||
local aux_classifier = nn.Sequential() | ||
aux_classifier:add(nn.SpatialAveragePooling(5,5,3,3):ceil()) | ||
aux_classifier:add(nn.SpatialConvolution(576,128,1,1,1,1)) | ||
aux_classifier:add(nn.View(128*4*4):setNumInputDims(3)) | ||
aux_classifier:add(nn.Linear(128*4*4,768)) | ||
aux_classifier:add(nn.ReLU()) | ||
aux_classifier:add(nn.Linear(768,nClasses)) | ||
aux_classifier:add(nn.LogSoftMax()) | ||
|
||
local splitter = nn.Concat(2) | ||
splitter:add(main_branch):add(aux_classifier) | ||
local model = nn.Sequential():add(features):add(splitter) | ||
|
||
model.imageSize = 256 | ||
model.imageCrop = 224 | ||
|
||
|
||
return model |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters