-
Notifications
You must be signed in to change notification settings - Fork 655
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feature: some basic block and deepar model
- Loading branch information
Showing
12 changed files
with
1,572 additions
and
0 deletions.
There are no files selected for viewing
172 changes: 172 additions & 0 deletions
172
extensions/timeseries/src/main/java/ai/djl/timeseries/block/FeatureEmbedder.java
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,172 @@ | ||
/* | ||
* Copyright 2022 Amazon.com, Inc. or its affiliates. All Rights Reserved. | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance | ||
* with the License. A copy of the License is located at | ||
* | ||
* http://aws.amazon.com/apache2.0/ | ||
* | ||
* or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES | ||
* OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions | ||
* and limitations under the License. | ||
*/ | ||
|
||
package ai.djl.timeseries.block; | ||
|
||
import ai.djl.ndarray.NDArray; | ||
import ai.djl.ndarray.NDArrays; | ||
import ai.djl.ndarray.NDList; | ||
import ai.djl.ndarray.NDManager; | ||
import ai.djl.ndarray.types.DataType; | ||
import ai.djl.ndarray.types.Shape; | ||
import ai.djl.nn.AbstractBlock; | ||
import ai.djl.training.ParameterStore; | ||
import ai.djl.util.PairList; | ||
|
||
import java.util.ArrayList; | ||
import java.util.List; | ||
|
||
/** Embed a sequence of categorical features. */ | ||
public class FeatureEmbedder extends AbstractBlock { | ||
|
||
private List<Integer> cardinalities; | ||
private List<Integer> embeddingDims; | ||
private List<FeatureEmbedding> embedders; | ||
private int numFeatures; | ||
|
||
FeatureEmbedder(Builder builder) { | ||
cardinalities = builder.cardinalities; | ||
embeddingDims = builder.embeddingDims; | ||
numFeatures = cardinalities.size(); | ||
embedders = new ArrayList<>(); | ||
for (int i = 0; i < cardinalities.size(); i++) { | ||
embedders.add(createEmbedding(i, cardinalities.get(i), embeddingDims.get(i))); | ||
} | ||
} | ||
|
||
/** {@inheritDoc} */ | ||
@Override | ||
protected NDList forwardInternal( | ||
ParameterStore parameterStore, | ||
NDList inputs, | ||
boolean training, | ||
PairList<String, Object> params) { | ||
// Categorical features with shape: (N,T,C) or (N,C), where C is the number of categorical | ||
// features. | ||
NDArray features = inputs.singletonOrThrow(); | ||
|
||
NDList catFeatureSlices; | ||
if (numFeatures > 1) { | ||
// slice the last dimension, giving an array of length numFeatures with shape (N,T) or | ||
// (N) | ||
catFeatureSlices = features.split(numFeatures, features.getShape().dimension() - 1); | ||
} else { | ||
catFeatureSlices = new NDList(features); | ||
} | ||
|
||
NDList output = new NDList(); | ||
for (int i = 0; i < numFeatures; i++) { | ||
FeatureEmbedding embed = embedders.get(i); | ||
NDArray catFeatureSlice = catFeatureSlices.get(i); | ||
catFeatureSlice = catFeatureSlice.squeeze(-1); | ||
output.add( | ||
embed.forward(parameterStore, new NDList(catFeatureSlice), training, params) | ||
.singletonOrThrow()); | ||
} | ||
return new NDList(NDArrays.concat(output, -1)); | ||
} | ||
|
||
/** {@inheritDoc} */ | ||
@Override | ||
public Shape[] getOutputShapes(Shape[] inputShapes) { | ||
Shape inputShape = inputShapes[0]; | ||
Shape[] embedInputShapes = {inputShape.slice(0, inputShape.dimension() - 1)}; | ||
long embedSizes = 0; | ||
for (FeatureEmbedding embed : embedders) { | ||
embedSizes += embed.getOutputShapes(embedInputShapes)[0].tail(); | ||
} | ||
return new Shape[] {inputShape.slice(0, inputShape.dimension() - 1).add(embedSizes)}; | ||
} | ||
|
||
/** {@inheritDoc} */ | ||
@Override | ||
protected void initializeChildBlocks( | ||
NDManager manager, DataType dataType, Shape... inputShapes) { | ||
for (FeatureEmbedding embed : embedders) { | ||
embed.initialize(manager, dataType, inputShapes); | ||
} | ||
} | ||
|
||
private FeatureEmbedding createEmbedding(int i, int c, int d) { | ||
FeatureEmbedding embedding = | ||
FeatureEmbedding.builder().setNumEmbeddings(c).setEmbeddingSize(d).build(); | ||
addChildBlock(String.format("cat_%d_embedding", i), embedding); | ||
return embedding; | ||
} | ||
|
||
/** | ||
* Return a builder to build an {@code FeatureEmbedder}. | ||
* | ||
* @return a new builder | ||
*/ | ||
public static Builder builder() { | ||
return new Builder(); | ||
} | ||
|
||
/** The builder to construct a {@link FeatureEmbedder} type of {@link ai.djl.nn.Block}. */ | ||
public static final class Builder { | ||
|
||
private List<Integer> cardinalities; | ||
private List<Integer> embeddingDims; | ||
|
||
/** | ||
* Set the cardinality for each categorical feature. | ||
* | ||
* @param cardinalities the cardinality for each categorical feature | ||
* @return this Builder | ||
*/ | ||
public Builder setCardinalities(List<Integer> cardinalities) { | ||
this.cardinalities = cardinalities; | ||
return this; | ||
} | ||
|
||
/** | ||
* Set the number of dimensions to embed each categorical feature. | ||
* | ||
* @param embeddingDims number of dimensions to embed each categorical feature | ||
* @return this Builder | ||
*/ | ||
public Builder setEmbeddingDims(List<Integer> embeddingDims) { | ||
this.embeddingDims = embeddingDims; | ||
return this; | ||
} | ||
|
||
/** | ||
* Return the constructed {@code FeatureEmbedder}. | ||
* | ||
* @return the constructed {@code FeatureEmbedder} | ||
*/ | ||
public FeatureEmbedder build() { | ||
if (cardinalities.isEmpty()) { | ||
throw new IllegalArgumentException( | ||
"Length of 'cardinalities' list must be greater than zero"); | ||
} | ||
if (cardinalities.size() != embeddingDims.size()) { | ||
throw new IllegalArgumentException( | ||
"Length of `cardinalities` and `embedding_dims` should match"); | ||
} | ||
for (int c : cardinalities) { | ||
if (c <= 0) { | ||
throw new IllegalArgumentException("Elements of `cardinalities` should be > 0"); | ||
} | ||
} | ||
for (int d : embeddingDims) { | ||
if (d <= 0) { | ||
throw new IllegalArgumentException( | ||
"Elements of `embedding_dims` should be > 0"); | ||
} | ||
} | ||
return new FeatureEmbedder(this); | ||
} | ||
} | ||
} |
121 changes: 121 additions & 0 deletions
121
extensions/timeseries/src/main/java/ai/djl/timeseries/block/FeatureEmbedding.java
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,121 @@ | ||
/* | ||
* Copyright 2022 Amazon.com, Inc. or its affiliates. All Rights Reserved. | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance | ||
* with the License. A copy of the License is located at | ||
* | ||
* http://aws.amazon.com/apache2.0/ | ||
* | ||
* or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES | ||
* OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions | ||
* and limitations under the License. | ||
*/ | ||
|
||
package ai.djl.timeseries.block; | ||
|
||
import ai.djl.Device; | ||
import ai.djl.ndarray.NDArray; | ||
import ai.djl.ndarray.NDList; | ||
import ai.djl.ndarray.types.Shape; | ||
import ai.djl.ndarray.types.SparseFormat; | ||
import ai.djl.nn.AbstractBlock; | ||
import ai.djl.nn.Parameter; | ||
import ai.djl.nn.core.Embedding; | ||
import ai.djl.training.ParameterStore; | ||
import ai.djl.util.PairList; | ||
|
||
/** An implement of nn.embedding. */ | ||
public final class FeatureEmbedding extends AbstractBlock { | ||
|
||
private static final String EMBEDDING_PARAM_NAME = "embedding"; | ||
|
||
private int embeddingSize; | ||
private int numEmbeddings; | ||
|
||
private Parameter embedding; | ||
|
||
FeatureEmbedding(Builder builder) { | ||
embeddingSize = builder.embeddingSize; | ||
numEmbeddings = builder.numEmbeddings; | ||
embedding = | ||
addParameter( | ||
Parameter.builder() | ||
.setName(EMBEDDING_PARAM_NAME) | ||
.setType(Parameter.Type.WEIGHT) | ||
.optShape(new Shape(numEmbeddings, embeddingSize)) | ||
.build()); | ||
} | ||
|
||
/** {@inheritDoc} */ | ||
@Override | ||
protected NDList forwardInternal( | ||
ParameterStore parameterStore, | ||
NDList inputs, | ||
boolean training, | ||
PairList<String, Object> params) { | ||
NDArray input = inputs.singletonOrThrow(); | ||
Device device = input.getDevice(); | ||
NDArray weight = parameterStore.getValue(embedding, device, training); | ||
return Embedding.embedding(input, weight, SparseFormat.DENSE); | ||
} | ||
|
||
/** {@inheritDoc} */ | ||
@Override | ||
public Shape[] getOutputShapes(Shape[] inputShapes) { | ||
return new Shape[] {inputShapes[0].addAll(new Shape(embeddingSize))}; | ||
} | ||
|
||
/** | ||
* Return a builder to build an {@code FeatureEmbedding}. | ||
* | ||
* @return a new builder | ||
*/ | ||
public static Builder builder() { | ||
return new Builder(); | ||
} | ||
|
||
/** The builder to construct a {@link FeatureEmbedding} type of {@link ai.djl.nn.Block}. */ | ||
public static final class Builder { | ||
|
||
private int embeddingSize; | ||
private int numEmbeddings; | ||
|
||
/** | ||
* Sets the size of the embeddings. | ||
* | ||
* @param embeddingSize the size of the embeddings | ||
* @return this Builder | ||
*/ | ||
public Builder setEmbeddingSize(int embeddingSize) { | ||
this.embeddingSize = embeddingSize; | ||
return this; | ||
} | ||
|
||
/** | ||
* Sets the size of the dictionary of embeddings. | ||
* | ||
* @param numEmbeddings the size of the dictionary of embeddings | ||
* @return this Builder | ||
*/ | ||
public Builder setNumEmbeddings(int numEmbeddings) { | ||
this.numEmbeddings = numEmbeddings; | ||
return this; | ||
} | ||
|
||
/** | ||
* Return the constructed {@code FeatureEmbedding}. | ||
* | ||
* @return the constructed {@code FeatureEmbedding} | ||
*/ | ||
public FeatureEmbedding build() { | ||
if (numEmbeddings <= 0) { | ||
throw new IllegalArgumentException( | ||
"You must specify the dictionary Size for the embedding."); | ||
} | ||
if (embeddingSize == 0) { | ||
throw new IllegalArgumentException("You must specify the embedding size"); | ||
} | ||
return new FeatureEmbedding(this); | ||
} | ||
} | ||
} |
Oops, something went wrong.