Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Yelov8 Translator optimization #2908

Merged
merged 3 commits into from
Dec 31, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
227 changes: 124 additions & 103 deletions api/src/main/java/ai/djl/modality/cv/translator/YoloV8Translator.java
Original file line number Diff line number Diff line change
@@ -1,103 +1,124 @@
/*
* Copyright 2023 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance
* with the License. A copy of the License is located at
*
* http://aws.amazon.com/apache2.0/
*
* or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES
* OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
* and limitations under the License.
*/
package ai.djl.modality.cv.translator;

import ai.djl.modality.cv.output.DetectedObjects;
import ai.djl.modality.cv.output.Rectangle;
import ai.djl.ndarray.NDArray;
import ai.djl.ndarray.NDList;
import ai.djl.ndarray.types.DataType;

import java.util.ArrayList;
import java.util.Map;

/**
* A translator for YoloV8 models. This was tested with ONNX exported Yolo models. For details check
* here: https://github.com/ultralytics/ultralytics
*/
public class YoloV8Translator extends YoloV5Translator {

/**
* Constructs an ImageTranslator with the provided builder.
*
* @param builder the data to build with
*/
protected YoloV8Translator(Builder builder) {
super(builder);
}

/**
* Creates a builder to build a {@code YoloV8Translator} with specified arguments.
*
* @param arguments arguments to specify builder options
* @return a new builder
*/
public static YoloV8Translator.Builder builder(Map<String, ?> arguments) {
YoloV8Translator.Builder builder = new YoloV8Translator.Builder();
builder.configPreProcess(arguments);
builder.configPostProcess(arguments);

return builder;
}

@Override
protected DetectedObjects processFromBoxOutput(NDList list) {
NDArray features4OneImg = list.get(0);
int sizeClasses = classes.size();
long sizeBoxes = features4OneImg.size(1);
ArrayList<IntermediateResult> intermediateResults = new ArrayList<>();

for (long b = 0; b < sizeBoxes; b++) {
float maxClass = 0;
int maxIndex = 0;
for (int c = 4; c < sizeClasses; c++) {
float classProb = features4OneImg.getFloat(c, b);
if (classProb > maxClass) {
maxClass = classProb;
maxIndex = c;
}
}

if (maxClass > threshold) {
float xPos = features4OneImg.getFloat(0, b); // center x
float yPos = features4OneImg.getFloat(1, b); // center y
float w = features4OneImg.getFloat(2, b);
float h = features4OneImg.getFloat(3, b);
Rectangle rect =
new Rectangle(Math.max(0, xPos - w / 2), Math.max(0, yPos - h / 2), w, h);
intermediateResults.add(
new IntermediateResult(classes.get(maxIndex), maxClass, maxIndex, rect));
}
}

return nms(intermediateResults);
}

/** The builder for {@link YoloV8Translator}. */
public static class Builder extends YoloV5Translator.Builder {
/**
* Builds the translator.
*
* @return the new translator
*/
@Override
public YoloV8Translator build() {
if (pipeline == null) {
addTransform(
array -> array.transpose(2, 0, 1).toType(DataType.FLOAT32, false).div(255));
}
validate();
return new YoloV8Translator(this);
}
}
}
/*
* Copyright 2023 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance
* with the License. A copy of the License is located at
*
* http://aws.amazon.com/apache2.0/
*
* or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES
* OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
* and limitations under the License.
*/
package ai.djl.modality.cv.translator;

import ai.djl.modality.cv.output.DetectedObjects;
import ai.djl.modality.cv.output.Rectangle;
import ai.djl.ndarray.NDArray;
import ai.djl.ndarray.NDList;
import ai.djl.ndarray.types.DataType;
import ai.djl.ndarray.types.Shape;
import ai.djl.translate.ArgumentsUtil;

import java.util.ArrayList;
import java.util.Map;

/**
* A translator for YoloV8 models. This was tested with ONNX exported Yolo models. For details check
* here: https://github.com/ultralytics/ultralytics
*/
public class YoloV8Translator extends YoloV5Translator {

private int maxBoxes;

/**
* Constructs an ImageTranslator with the provided builder.
*
* @param builder the data to build with
*/
protected YoloV8Translator(Builder builder) {
super(builder);
maxBoxes = builder.maxBox;
}

/**
* Creates a builder to build a {@code YoloV8Translator} with specified arguments.
*
* @param arguments arguments to specify builder options
* @return a new builder
*/
public static YoloV8Translator.Builder builder(Map<String, ?> arguments) {
YoloV8Translator.Builder builder = new YoloV8Translator.Builder();
builder.configPreProcess(arguments);
builder.configPostProcess(arguments);

return builder;
}

/** {@inheritDoc} */
@Override
protected DetectedObjects processFromBoxOutput(NDList list) {
NDArray rawResult = list.get(0);
NDArray reshapedResult = rawResult.transpose();
Shape shape = reshapedResult.getShape();
float[] buf = reshapedResult.toFloatArray();
int numberRows = Math.toIntExact(shape.get(0));
int nClasses = Math.toIntExact(shape.get(1));

ArrayList<IntermediateResult> intermediateResults = new ArrayList<>();
// reverse order search in heap; searches through #maxBoxes for optimization when set
for (int i = numberRows - 1; i > numberRows - maxBoxes; --i) {
int index = i * nClasses;
float maxClassProb = -1f;
int maxIndex = -1;
for (int c = 4; c < nClasses; c++) {
float classProb = buf[index + c];
if (classProb > maxClassProb) {
maxClassProb = classProb;
maxIndex = c;
}
}

if (maxClassProb > threshold) {
float xPos = buf[index]; // center x
float yPos = buf[index + 1]; // center y
float w = buf[index + 2];
float h = buf[index + 3];
Rectangle rect =
new Rectangle(Math.max(0, xPos - w / 2), Math.max(0, yPos - h / 2), w, h);
intermediateResults.add(
new IntermediateResult(
classes.get(maxIndex), maxClassProb, maxIndex, rect));
}
}
return nms(intermediateResults);
}

/** The builder for {@link YoloV8Translator}. */
public static class Builder extends YoloV5Translator.Builder {

private int maxBox = 8400;

/**
* Builds the translator.
*
* @return the new translator
*/
@Override
public YoloV8Translator build() {
if (pipeline == null) {
addTransform(
array -> array.transpose(2, 0, 1).toType(DataType.FLOAT32, false).div(255));
}
validate();
return new YoloV8Translator(this);
}

/** {@inheritDoc} */
@Override
protected void configPostProcess(Map<String, ?> arguments) {
super.configPostProcess(arguments);
maxBox = ArgumentsUtil.intValue(arguments, "maxBox", 8400);
}
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -16,27 +16,21 @@
import ai.djl.inference.Predictor;
import ai.djl.modality.cv.Image;
import ai.djl.modality.cv.ImageFactory;
import ai.djl.modality.cv.output.BoundingBox;
import ai.djl.modality.cv.output.DetectedObjects;
import ai.djl.modality.cv.output.DetectedObjects.DetectedObject;
import ai.djl.modality.cv.output.Rectangle;
import ai.djl.modality.cv.translator.YoloV8TranslatorFactory;
import ai.djl.repository.zoo.Criteria;
import ai.djl.repository.zoo.ZooModel;
import ai.djl.training.util.ProgressBar;
import ai.djl.translate.TranslateException;
import ai.djl.translate.Translator;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.io.IOException;
import java.io.OutputStream;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.List;
import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;

/** An example of inference using an yolov8 model. */
public final class Yolov8Detection {
Expand All @@ -51,82 +45,44 @@ public static void main(String[] args) throws IOException, ModelException, Trans
}

public static DetectedObjects predict() throws IOException, ModelException, TranslateException {
String classPath = System.getProperty("java.class.path");
String pathSeparator = System.getProperty("path.separator");
classPath = classPath.split(pathSeparator)[0];
Path modelPath = Paths.get(classPath + "/yolov8n.onnx");
Path imgPath = Paths.get(classPath + "/yolov8_test.jpg");
Path modelPath = Paths.get("src/test/resources/yolov8n.onnx");
Path imgPath = Paths.get("src/test/resources/yolov8_test.jpg");
Image img = ImageFactory.getInstance().fromFile(imgPath);

Map<String, Object> arguments = new ConcurrentHashMap<>();
arguments.put("width", 640);
arguments.put("height", 640);
arguments.put("resize", "true");
arguments.put("toTensor", true);
arguments.put("applyRatio", true);
arguments.put("threshold", 0.6f);
arguments.put("synsetFileName", "yolov8_synset.txt");

YoloV8TranslatorFactory yoloV8TranslatorFactory = new YoloV8TranslatorFactory();
Translator<Image, DetectedObjects> translator =
yoloV8TranslatorFactory.newInstance(
Image.class, DetectedObjects.class, null, arguments);

Criteria<Image, DetectedObjects> criteria =
Criteria.builder()
.setTypes(Image.class, DetectedObjects.class)
.optModelPath(modelPath)
.optEngine("OnnxRuntime")
.optTranslator(translator)
.optArgument("width", 640)
.optArgument("height", 640)
.optArgument("resize", true)
.optArgument("toTensor", true)
.optArgument("applyRatio", true)
.optArgument("threshold", 0.6f)
// for performance optimization maxBox parameter can reduce number of
// considered boxes from 8400
.optArgument("maxBox", 1000)
.optArgument("synsetFileName", "yolov8_synset.txt")
.optTranslatorFactory(new YoloV8TranslatorFactory())
.optProgress(new ProgressBar())
.build();

DetectedObjects detectedObjects;
DetectedObject detectedObject;
try (ZooModel<Image, DetectedObjects> model = criteria.loadModel();
Predictor<Image, DetectedObjects> predictor = model.newPredictor()) {
Path outputPath = Paths.get(classPath + "/output");
Path outputPath = Paths.get("build/output");
Files.createDirectories(outputPath);

detectedObjects = predictor.predict(img);

if (detectedObjects.getNumberOfObjects() > 0) {
List<DetectedObject> detectedObjectList = detectedObjects.items();
for (DetectedObject object : detectedObjectList) {
detectedObject = object;
BoundingBox boundingBox = detectedObject.getBoundingBox();
Rectangle tectangle = boundingBox.getBounds();
logger.info(
detectedObject.getClassName()
+ " "
+ detectedObject.getProbability()
+ " "
+ tectangle.getX()
+ " "
+ tectangle.getY()
+ " "
+ tectangle.getWidth()
+ " "
+ tectangle.getHeight());
DetectedObjects detection = predictor.predict(img);
if (detection.getNumberOfObjects() > 0) {
img.drawBoundingBoxes(detection);
Path output = outputPath.resolve("yolov8_detected.png");
try (OutputStream os = Files.newOutputStream(output)) {
img.save(os, "png");
}

saveBoundingBoxImage(
img.resize(640, 640, false),
detectedObjects,
outputPath,
imgPath.toFile().getName());
logger.info("Detected object saved in: {}", output);
}

return detectedObjects;
return detection;
}
}

private static void saveBoundingBoxImage(
Image img, DetectedObjects detectedObjects, Path outputPath, String outputFileName)
throws IOException {
img.drawBoundingBoxes(detectedObjects);

Path imagePath = outputPath.resolve(outputFileName);
img.save(Files.newOutputStream(imagePath), "png");
}
}
Loading
Loading