-
라이브러리와 linux : 딥러닝을 위한 라이브러리와 linux
-
딥러닝 개요
- 딥러닝 개념 : deep_learning_intro.pptx
- 알파고 이해하기 : understanding_alphago.pptx
-
Keras
- DNN in Keras : dnn_in_keras.ipynb
- Keras 요약 keras_in_short.md
-
DNN as classifier
- 분류기 : dnn_as_a_classifier.ipynb
- IRIS
- MNIST 영상데이터 : dnn_mnist.ipynb
-
CNN
- MNIST : cnn_mnist.ipynb
- CIFAR10 : cnn_cifar10.ipynb
- IRIS : iris_cnn_and_auc_score.ipynb
-
multiple data type : combined_model.ipynb
-
VGG - CIFAR10, ImageNet, custom data : VGG16_classification_and_cumtom_data_training.ipynb
-
U-Net Segmentation - Lung data : unet_segementation.ipynb
-
Object Detection
- CoCo, custom data : object_detection.md
-
Text : text_classification.ipynb
-
손실함수의 이해 : understanding_loss_function.ipynb
Environment
jupyter
colab
usage
!, %, run
linux
command
cd, pwd, ls
mkdir, rm, cp
head, more, tail, cat
util
apt
git, wget
grep, wc, tree
tar, unrar, unzip
gpu
nvidia-smi
python
env
python
interactive
execute file
pip
syntax
variable
data
tuple
list
dict
set
loop
if
comprehensive list
function
class
module
import
libray
numpy
op
shape
slicing
reshape
axis + sum, mean
pandas
load
view
to numpy
matplot
line graph
scatter graph
show image
Deep Learning
DNN
concept
layer, node, weight, bias, activation
cost function
GD, BP
data
x, y
train, validate, test
shuffle
learning curve : accuracy, loss
tunning
overfitting, underfitting
regularization, dropout, batch normalization
data augmentation
Transfer Learning
type
supervised
unsupervised
reinforcement
model
CNN
varnilla, VGG16
RNN
GAN
task
Classification
Object Detection
Segmentation
Anomaly Detection
Generation
target : text/image
TensorFlow/Keras
basic frame
data preparing
x, y
train, valid, test
normalization
ImageDataGenerator
fit
evaluate
predict
model
activation function
initializer
tuning
learning rate
regularier
dropout
batch normalization
save/load
compile
optimizer
loss
metric