secp256k1 is an elliptic curve library developed and maintained by Bitcoin Core community.
This repository makes it easy to use the library with Arduino IDE, ARM Mbed and MicroPython.
For Arduino and Mbed it introduces a few hacks to get around their recursive build system. For MicroPython it defines bindings that makes the library accessible from MicroPython.
Tested on ESP32 (M5Stack, TTGO) and STM32F469I-Discovery, but should work on any 32-bit MCU.
Clone with --recursive
flag to the folder where you store user modules.
Compile MicroPython for your board with user modules and CFLAGS_EXTRA=-DMODULE_SECP256K1_ENABLED=1
flag. For example:
make BOARD=STM32F469DISC USER_C_MODULES=../../../usermods CFLAGS_EXTRA=-DMODULE_SECP256K1_ENABLED=1
Here replace STM32F469DISC
to your board name, ../../../usermods
to your path to usermods folder.
Here is a usage example for MicroPython: examples/secp256k1.py
Clone this repo with --recursive
flag to the Arduino/libraries/
folder (or download zip file and select Sketch->Include Library->Add .ZIP Library
.
Check out the example for Arduino to see it in action.
Clone this repo with --recursive
flag to the project folder, or whatever folder you store libraries in. In the online IDE do Import Library
and put there a link to this repository.
Check out the example. You can also import this project and start from there.
Important! Library mostly uses stack, and mbed has pretty small default limitat for the stack size. You can increase the stack size in mbed_app.json
file:
{
"target_overrides": {
"*": {
"rtos.main-thread-stack-size": "8192"
}
}
}
Or you can use bare-metal mbed version:
{
"requires": ["bare-metal"]
}
A very basic example in C/C++:
// secp256k1 context
secp256k1_context *ctx = NULL;
int res; // to store results of function calls
size_t len; // to store serialization lengths
// first we need to create the context
// this is the size of memory to be allocated
size_t context_size = secp256k1_context_preallocated_size(SECP256K1_CONTEXT_VERIFY | SECP256K1_CONTEXT_SIGN);
// creating the context
ctx = secp256k1_context_create(SECP256K1_CONTEXT_VERIFY | SECP256K1_CONTEXT_SIGN);
// some random secret key
uint8_t secret[] = {
0xbd, 0xb5, 0x1a, 0x16, 0xeb, 0x64, 0x60, 0xec,
0x16, 0xf8, 0x4d, 0x7b, 0x6f, 0x19, 0xe2, 0x0d,
0x9b, 0x9a, 0xb5, 0x58, 0xfa, 0x0e, 0x9a, 0xe4,
0xbb, 0x49, 0x3e, 0xf7, 0x79, 0xf1, 0x40, 0x55
};
// Makes sense to check if secret key is valid.
// It will be ok in most cases, only if secret > N it will be invalid
res = secp256k1_ec_seckey_verify(ctx, secret);
if(!res){ return; /* handle error here */ }
/**************** Public key ******************/
// computing corresponding pubkey
secp256k1_pubkey pubkey;
res = secp256k1_ec_pubkey_create(ctx, &pubkey, secret);
if(!res){ return; /* handle error here */ }
// serialize the pubkey in compressed format
uint8_t pub[33];
len = sizeof(pub);
secp256k1_ec_pubkey_serialize(ctx, pub, &len, &pubkey, SECP256K1_EC_COMPRESSED);
// this is how you parse the pubkey
res = secp256k1_ec_pubkey_parse(ctx, &pubkey, pub, 33);
if(res){
// Key is valid
}else{
// Invalid pubkey
}
/**************** Signature stuff ******************/
// hash of the string "hello"
uint8_t hash[32] = {
0x2c, 0xf2, 0x4d, 0xba, 0x5f, 0xb0, 0xa3, 0x0e,
0x26, 0xe8, 0x3b, 0x2a, 0xc5, 0xb9, 0xe2, 0x9e,
0x1b, 0x16, 0x1e, 0x5c, 0x1f, 0xa7, 0x42, 0x5e,
0x73, 0x04, 0x33, 0x62, 0x93, 0x8b, 0x98, 0x24
};
// signing
secp256k1_ecdsa_signature sig;
res = secp256k1_ecdsa_sign(ctx, &sig, hash, secret, NULL, NULL);
if(!res){ return; /* handle error here */ }
// serialization
uint8_t der[72];
len = sizeof(der);
res = secp256k1_ecdsa_signature_serialize_der(ctx, der, &len, &sig);
if(!res){ return; /* handle error here */ }
// verification
res = secp256k1_ecdsa_verify(ctx, &sig, hash, &pubkey);
if(res){
// Signature is valid
}else{
// Invalid signature
}
secp256k1_context_destroy(ctx);