Skip to content

Commit

Permalink
Make objectives work with vertical distributed and federated learning (
Browse files Browse the repository at this point in the history
  • Loading branch information
rongou authored Apr 3, 2023
1 parent 720a8c3 commit 15e073c
Show file tree
Hide file tree
Showing 7 changed files with 201 additions and 113 deletions.
69 changes: 38 additions & 31 deletions src/objective/adaptive.cc
Original file line number Diff line number Diff line change
Expand Up @@ -85,7 +85,7 @@ void UpdateTreeLeafHost(Context const* ctx, std::vector<bst_node_t> const& posit
size_t n_leaf = nidx.size();
if (nptr.empty()) {
std::vector<float> quantiles;
UpdateLeafValues(&quantiles, nidx, learning_rate, p_tree);
UpdateLeafValues(&quantiles, nidx, info, learning_rate, p_tree);
return;
}

Expand All @@ -99,39 +99,46 @@ void UpdateTreeLeafHost(Context const* ctx, std::vector<bst_node_t> const& posit
auto h_predt = linalg::MakeTensorView(ctx, predt.ConstHostSpan(), info.num_row_,
predt.Size() / info.num_row_);

// loop over each leaf
common::ParallelFor(quantiles.size(), ctx->Threads(), [&](size_t k) {
auto nidx = h_node_idx[k];
CHECK(tree[nidx].IsLeaf());
CHECK_LT(k + 1, h_node_ptr.size());
size_t n = h_node_ptr[k + 1] - h_node_ptr[k];
auto h_row_set = common::Span<size_t const>{ridx}.subspan(h_node_ptr[k], n);

auto h_labels = info.labels.HostView().Slice(linalg::All(), IdxY(info, group_idx));
auto h_weights = linalg::MakeVec(&info.weights_);

auto iter = common::MakeIndexTransformIter([&](size_t i) -> float {
auto row_idx = h_row_set[i];
return h_labels(row_idx) - h_predt(row_idx, group_idx);
});
auto w_it = common::MakeIndexTransformIter([&](size_t i) -> float {
auto row_idx = h_row_set[i];
return h_weights(row_idx);
if (!info.IsVerticalFederated() || collective::GetRank() == 0) {
// loop over each leaf
common::ParallelFor(quantiles.size(), ctx->Threads(), [&](size_t k) {
auto nidx = h_node_idx[k];
CHECK(tree[nidx].IsLeaf());
CHECK_LT(k + 1, h_node_ptr.size());
size_t n = h_node_ptr[k + 1] - h_node_ptr[k];
auto h_row_set = common::Span<size_t const>{ridx}.subspan(h_node_ptr[k], n);

auto h_labels = info.labels.HostView().Slice(linalg::All(), IdxY(info, group_idx));
auto h_weights = linalg::MakeVec(&info.weights_);

auto iter = common::MakeIndexTransformIter([&](size_t i) -> float {
auto row_idx = h_row_set[i];
return h_labels(row_idx) - h_predt(row_idx, group_idx);
});
auto w_it = common::MakeIndexTransformIter([&](size_t i) -> float {
auto row_idx = h_row_set[i];
return h_weights(row_idx);
});

float q{0};
if (info.weights_.Empty()) {
q = common::Quantile(ctx, alpha, iter, iter + h_row_set.size());
} else {
q = common::WeightedQuantile(ctx, alpha, iter, iter + h_row_set.size(), w_it);
}
if (std::isnan(q)) {
CHECK(h_row_set.empty());
}
quantiles.at(k) = q;
});
}

float q{0};
if (info.weights_.Empty()) {
q = common::Quantile(ctx, alpha, iter, iter + h_row_set.size());
} else {
q = common::WeightedQuantile(ctx, alpha, iter, iter + h_row_set.size(), w_it);
}
if (std::isnan(q)) {
CHECK(h_row_set.empty());
}
quantiles.at(k) = q;
});
if (info.IsVerticalFederated()) {
collective::Broadcast(static_cast<void*>(quantiles.data()), quantiles.size() * sizeof(float),
0);
}

UpdateLeafValues(&quantiles, nidx, learning_rate, p_tree);
UpdateLeafValues(&quantiles, nidx, info, learning_rate, p_tree);
}

#if !defined(XGBOOST_USE_CUDA)
Expand Down
4 changes: 2 additions & 2 deletions src/objective/adaptive.cu
Original file line number Diff line number Diff line change
Expand Up @@ -151,7 +151,7 @@ void UpdateTreeLeafDevice(Context const* ctx, common::Span<bst_node_t const> pos

if (nptr.Empty()) {
std::vector<float> quantiles;
UpdateLeafValues(&quantiles, nidx.ConstHostVector(), learning_rate, p_tree);
UpdateLeafValues(&quantiles, nidx.ConstHostVector(), info, learning_rate, p_tree);
}

HostDeviceVector<float> quantiles;
Expand Down Expand Up @@ -186,7 +186,7 @@ void UpdateTreeLeafDevice(Context const* ctx, common::Span<bst_node_t const> pos
w_it + d_weights.size(), &quantiles);
}

UpdateLeafValues(&quantiles.HostVector(), nidx.ConstHostVector(), learning_rate, p_tree);
UpdateLeafValues(&quantiles.HostVector(), nidx.ConstHostVector(), info, learning_rate, p_tree);
}
} // namespace detail
} // namespace obj
Expand Down
14 changes: 10 additions & 4 deletions src/objective/adaptive.h
Original file line number Diff line number Diff line change
Expand Up @@ -36,13 +36,15 @@ inline void FillMissingLeaf(std::vector<bst_node_t> const& maybe_missing,
}

inline void UpdateLeafValues(std::vector<float>* p_quantiles, std::vector<bst_node_t> const& nidx,
float learning_rate, RegTree* p_tree) {
MetaInfo const& info, float learning_rate, RegTree* p_tree) {
auto& tree = *p_tree;
auto& quantiles = *p_quantiles;
auto const& h_node_idx = nidx;

size_t n_leaf{h_node_idx.size()};
collective::Allreduce<collective::Operation::kMax>(&n_leaf, 1);
if (info.IsRowSplit()) {
collective::Allreduce<collective::Operation::kMax>(&n_leaf, 1);
}
CHECK(quantiles.empty() || quantiles.size() == n_leaf);
if (quantiles.empty()) {
quantiles.resize(n_leaf, std::numeric_limits<float>::quiet_NaN());
Expand All @@ -52,12 +54,16 @@ inline void UpdateLeafValues(std::vector<float>* p_quantiles, std::vector<bst_no
std::vector<int32_t> n_valids(quantiles.size());
std::transform(quantiles.cbegin(), quantiles.cend(), n_valids.begin(),
[](float q) { return static_cast<int32_t>(!std::isnan(q)); });
collective::Allreduce<collective::Operation::kSum>(n_valids.data(), n_valids.size());
if (info.IsRowSplit()) {
collective::Allreduce<collective::Operation::kSum>(n_valids.data(), n_valids.size());
}
// convert to 0 for all reduce
std::replace_if(
quantiles.begin(), quantiles.end(), [](float q) { return std::isnan(q); }, 0.f);
// use the mean value
collective::Allreduce<collective::Operation::kSum>(quantiles.data(), quantiles.size());
if (info.IsRowSplit()) {
collective::Allreduce<collective::Operation::kSum>(quantiles.data(), quantiles.size());
}
for (size_t i = 0; i < n_leaf; ++i) {
if (n_valids[i] > 0) {
quantiles[i] /= static_cast<float>(n_valids[i]);
Expand Down
11 changes: 8 additions & 3 deletions src/objective/quantile_obj.cu
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,10 @@ class QuantileRegression : public ObjFunction {
bst_target_t Targets(MetaInfo const& info) const override {
auto const& alpha = param_.quantile_alpha.Get();
CHECK_EQ(alpha.size(), alpha_.Size()) << "The objective is not yet configured.";
CHECK_EQ(info.labels.Shape(1), 1) << "Multi-target is not yet supported by the quantile loss.";
if (!info.IsVerticalFederated() || collective::GetRank() == 0) {
CHECK_EQ(info.labels.Shape(1), 1)
<< "Multi-target is not yet supported by the quantile loss.";
}
CHECK(!alpha.empty());
// We have some placeholders for multi-target in the quantile loss. But it's not
// supported as the gbtree doesn't know how to slice the gradient and there's no 3-dim
Expand Down Expand Up @@ -167,8 +170,10 @@ class QuantileRegression : public ObjFunction {
common::Mean(ctx_, *base_score, &temp);
double meanq = temp(0) * sw;

collective::Allreduce<collective::Operation::kSum>(&meanq, 1);
collective::Allreduce<collective::Operation::kSum>(&sw, 1);
if (info.IsRowSplit()) {
collective::Allreduce<collective::Operation::kSum>(&meanq, 1);
collective::Allreduce<collective::Operation::kSum>(&sw, 1);
}
meanq /= (sw + kRtEps);
base_score->Reshape(1);
base_score->Data()->Fill(meanq);
Expand Down
6 changes: 4 additions & 2 deletions src/objective/regression_obj.cu
Original file line number Diff line number Diff line change
Expand Up @@ -728,8 +728,10 @@ class MeanAbsoluteError : public ObjFunction {
std::transform(linalg::cbegin(out), linalg::cend(out), linalg::begin(out),
[w](float v) { return v * w; });

collective::Allreduce<collective::Operation::kSum>(out.Values().data(), out.Values().size());
collective::Allreduce<collective::Operation::kSum>(&w, 1);
if (info.IsRowSplit()) {
collective::Allreduce<collective::Operation::kSum>(out.Values().data(), out.Values().size());
collective::Allreduce<collective::Operation::kSum>(&w, 1);
}

if (common::CloseTo(w, 0.0)) {
// Mostly for handling empty dataset test.
Expand Down
127 changes: 76 additions & 51 deletions tests/cpp/plugin/test_federated_learner.cc
Original file line number Diff line number Diff line change
Expand Up @@ -13,66 +13,91 @@

namespace xgboost {

void VerifyObjectives(size_t rows, size_t cols, std::vector<float> const &expected_base_scores,
std::vector<Json> const &expected_models) {
auto const world_size = collective::GetWorldSize();
auto const rank = collective::GetRank();
std::shared_ptr<DMatrix> dmat{RandomDataGenerator{rows, cols, 0}.GenerateDMatrix(rank == 0)};

if (rank == 0) {
auto &h_upper = dmat->Info().labels_upper_bound_.HostVector();
auto &h_lower = dmat->Info().labels_lower_bound_.HostVector();
h_lower.resize(rows);
h_upper.resize(rows);
for (size_t i = 0; i < rows; ++i) {
h_lower[i] = 1;
h_upper[i] = 10;
}
}
std::shared_ptr<DMatrix> sliced{dmat->SliceCol(world_size, rank)};

auto i = 0;
for (auto const *entry : ::dmlc::Registry<::xgboost::ObjFunctionReg>::List()) {
std::unique_ptr<Learner> learner{Learner::Create({sliced})};
learner->SetParam("tree_method", "approx");
learner->SetParam("objective", entry->name);
if (entry->name.find("quantile") != std::string::npos) {
learner->SetParam("quantile_alpha", "0.5");
}
if (entry->name.find("multi") != std::string::npos) {
learner->SetParam("num_class", "3");
}
learner->UpdateOneIter(0, sliced);

Json config{Object{}};
learner->SaveConfig(&config);
auto base_score = GetBaseScore(config);
ASSERT_EQ(base_score, expected_base_scores[i]);

Json model{Object{}};
learner->SaveModel(&model);
ASSERT_EQ(model, expected_models[i]);

i++;
}
}

class FederatedLearnerTest : public BaseFederatedTest {
protected:
static auto constexpr kRows{16};
static auto constexpr kCols{16};
};

void VerifyBaseScore(size_t rows, size_t cols, float expected_base_score) {
auto const world_size = collective::GetWorldSize();
auto const rank = collective::GetRank();
std::shared_ptr<DMatrix> Xy_{RandomDataGenerator{rows, cols, 0}.GenerateDMatrix(rank == 0)};
std::shared_ptr<DMatrix> sliced{Xy_->SliceCol(world_size, rank)};
std::unique_ptr<Learner> learner{Learner::Create({sliced})};
learner->SetParam("tree_method", "approx");
learner->SetParam("objective", "binary:logistic");
learner->UpdateOneIter(0, sliced);
Json config{Object{}};
learner->SaveConfig(&config);
auto base_score = GetBaseScore(config);
ASSERT_EQ(base_score, expected_base_score);
}

void VerifyModel(size_t rows, size_t cols, Json const& expected_model) {
auto const world_size = collective::GetWorldSize();
auto const rank = collective::GetRank();
std::shared_ptr<DMatrix> Xy_{RandomDataGenerator{rows, cols, 0}.GenerateDMatrix(rank == 0)};
std::shared_ptr<DMatrix> sliced{Xy_->SliceCol(world_size, rank)};
std::unique_ptr<Learner> learner{Learner::Create({sliced})};
learner->SetParam("tree_method", "approx");
learner->SetParam("objective", "binary:logistic");
learner->UpdateOneIter(0, sliced);
Json model{Object{}};
learner->SaveModel(&model);
ASSERT_EQ(model, expected_model);
}
TEST_F(FederatedLearnerTest, Objectives) {
std::shared_ptr<DMatrix> dmat{RandomDataGenerator{kRows, kCols, 0}.GenerateDMatrix(true)};

TEST_F(FederatedLearnerTest, BaseScore) {
std::shared_ptr<DMatrix> Xy_{RandomDataGenerator{kRows, kCols, 0}.GenerateDMatrix(true)};
std::unique_ptr<Learner> learner{Learner::Create({Xy_})};
learner->SetParam("tree_method", "approx");
learner->SetParam("objective", "binary:logistic");
learner->UpdateOneIter(0, Xy_);
Json config{Object{}};
learner->SaveConfig(&config);
auto base_score = GetBaseScore(config);
ASSERT_NE(base_score, ObjFunction::DefaultBaseScore());
auto &h_upper = dmat->Info().labels_upper_bound_.HostVector();
auto &h_lower = dmat->Info().labels_lower_bound_.HostVector();
h_lower.resize(kRows);
h_upper.resize(kRows);
for (size_t i = 0; i < kRows; ++i) {
h_lower[i] = 1;
h_upper[i] = 10;
}

RunWithFederatedCommunicator(kWorldSize, server_address_, &VerifyBaseScore, kRows, kCols,
base_score);
}
std::vector<float> base_scores;
std::vector<Json> models;
for (auto const *entry : ::dmlc::Registry<::xgboost::ObjFunctionReg>::List()) {
std::unique_ptr<Learner> learner{Learner::Create({dmat})};
learner->SetParam("tree_method", "approx");
learner->SetParam("objective", entry->name);
if (entry->name.find("quantile") != std::string::npos) {
learner->SetParam("quantile_alpha", "0.5");
}
if (entry->name.find("multi") != std::string::npos) {
learner->SetParam("num_class", "3");
}
learner->UpdateOneIter(0, dmat);
Json config{Object{}};
learner->SaveConfig(&config);
base_scores.emplace_back(GetBaseScore(config));

TEST_F(FederatedLearnerTest, Model) {
std::shared_ptr<DMatrix> Xy_{RandomDataGenerator{kRows, kCols, 0}.GenerateDMatrix(true)};
std::unique_ptr<Learner> learner{Learner::Create({Xy_})};
learner->SetParam("tree_method", "approx");
learner->SetParam("objective", "binary:logistic");
learner->UpdateOneIter(0, Xy_);
Json model{Object{}};
learner->SaveModel(&model);
Json model{Object{}};
learner->SaveModel(&model);
models.emplace_back(model);
}

RunWithFederatedCommunicator(kWorldSize, server_address_, &VerifyModel, kRows, kCols,
std::cref(model));
RunWithFederatedCommunicator(kWorldSize, server_address_, &VerifyObjectives, kRows, kCols,
base_scores, models);
}
} // namespace xgboost
Loading

0 comments on commit 15e073c

Please sign in to comment.