-
-
Notifications
You must be signed in to change notification settings - Fork 8.7k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Demo for experimental categorical data support. (#7213)
- Loading branch information
1 parent
3515931
commit d997c96
Showing
2 changed files
with
81 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,75 @@ | ||
"""Experimental support for categorical data. After 1.5 XGBoost `gpu_hist` tree method | ||
has experimental support for one-hot encoding based tree split. | ||
In before, users need to run an encoder themselves before passing the data into XGBoost, | ||
which creates a sparse matrix and potentially increase memory usage. This demo showcases | ||
the experimental categorical data support, more advanced features are planned. | ||
.. versionadded:: 1.5.0 | ||
""" | ||
import pandas as pd | ||
import numpy as np | ||
import xgboost as xgb | ||
from typing import Tuple | ||
|
||
|
||
def make_categorical( | ||
n_samples: int, n_features: int, n_categories: int, onehot: bool | ||
) -> Tuple[pd.DataFrame, pd.Series]: | ||
"""Make some random data for demo.""" | ||
rng = np.random.RandomState(1994) | ||
|
||
pd_dict = {} | ||
for i in range(n_features + 1): | ||
c = rng.randint(low=0, high=n_categories, size=n_samples) | ||
pd_dict[str(i)] = pd.Series(c, dtype=np.int64) | ||
|
||
df = pd.DataFrame(pd_dict) | ||
label = df.iloc[:, 0] | ||
df = df.iloc[:, 1:] | ||
for i in range(0, n_features): | ||
label += df.iloc[:, i] | ||
label += 1 | ||
|
||
df = df.astype("category") | ||
categories = np.arange(0, n_categories) | ||
for col in df.columns: | ||
df[col] = df[col].cat.set_categories(categories) | ||
|
||
if onehot: | ||
return pd.get_dummies(df), label | ||
return df, label | ||
|
||
|
||
def main() -> None: | ||
# Use builtin categorical data support | ||
# Must be pandas DataFrame or cudf DataFrame with categorical data | ||
X, y = make_categorical(100, 10, 4, False) | ||
# Specify `enable_categorical` to True. | ||
reg = xgb.XGBRegressor(tree_method="gpu_hist", enable_categorical=True) | ||
reg.fit(X, y, eval_set=[(X, y)]) | ||
|
||
# Pass in already encoded data | ||
X_enc, y_enc = make_categorical(100, 10, 4, True) | ||
reg_enc = xgb.XGBRegressor(tree_method="gpu_hist") | ||
reg_enc.fit(X_enc, y_enc, eval_set=[(X_enc, y_enc)]) | ||
|
||
reg_results = np.array(reg.evals_result()["validation_0"]["rmse"]) | ||
reg_enc_results = np.array(reg_enc.evals_result()["validation_0"]["rmse"]) | ||
|
||
# Check that they have same results | ||
np.testing.assert_allclose(reg_results, reg_enc_results) | ||
|
||
# Convert to DMatrix for SHAP value | ||
booster: xgb.Booster = reg.get_booster() | ||
m = xgb.DMatrix(X, enable_categorical=True) # specify categorical data support. | ||
SHAP = booster.predict(m, pred_contribs=True) | ||
margin = booster.predict(m, output_margin=True) | ||
np.testing.assert_allclose( | ||
np.sum(SHAP, axis=len(SHAP.shape) - 1), margin, rtol=1e-3 | ||
) | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters