Skip to content

Commit

Permalink
Demo for experimental categorical data support. (#7213)
Browse files Browse the repository at this point in the history
  • Loading branch information
trivialfis authored Sep 15, 2021
1 parent 3515931 commit d997c96
Show file tree
Hide file tree
Showing 2 changed files with 81 additions and 0 deletions.
75 changes: 75 additions & 0 deletions demo/guide-python/categorical.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,75 @@
"""Experimental support for categorical data. After 1.5 XGBoost `gpu_hist` tree method
has experimental support for one-hot encoding based tree split.
In before, users need to run an encoder themselves before passing the data into XGBoost,
which creates a sparse matrix and potentially increase memory usage. This demo showcases
the experimental categorical data support, more advanced features are planned.
.. versionadded:: 1.5.0
"""
import pandas as pd
import numpy as np
import xgboost as xgb
from typing import Tuple


def make_categorical(
n_samples: int, n_features: int, n_categories: int, onehot: bool
) -> Tuple[pd.DataFrame, pd.Series]:
"""Make some random data for demo."""
rng = np.random.RandomState(1994)

pd_dict = {}
for i in range(n_features + 1):
c = rng.randint(low=0, high=n_categories, size=n_samples)
pd_dict[str(i)] = pd.Series(c, dtype=np.int64)

df = pd.DataFrame(pd_dict)
label = df.iloc[:, 0]
df = df.iloc[:, 1:]
for i in range(0, n_features):
label += df.iloc[:, i]
label += 1

df = df.astype("category")
categories = np.arange(0, n_categories)
for col in df.columns:
df[col] = df[col].cat.set_categories(categories)

if onehot:
return pd.get_dummies(df), label
return df, label


def main() -> None:
# Use builtin categorical data support
# Must be pandas DataFrame or cudf DataFrame with categorical data
X, y = make_categorical(100, 10, 4, False)
# Specify `enable_categorical` to True.
reg = xgb.XGBRegressor(tree_method="gpu_hist", enable_categorical=True)
reg.fit(X, y, eval_set=[(X, y)])

# Pass in already encoded data
X_enc, y_enc = make_categorical(100, 10, 4, True)
reg_enc = xgb.XGBRegressor(tree_method="gpu_hist")
reg_enc.fit(X_enc, y_enc, eval_set=[(X_enc, y_enc)])

reg_results = np.array(reg.evals_result()["validation_0"]["rmse"])
reg_enc_results = np.array(reg_enc.evals_result()["validation_0"]["rmse"])

# Check that they have same results
np.testing.assert_allclose(reg_results, reg_enc_results)

# Convert to DMatrix for SHAP value
booster: xgb.Booster = reg.get_booster()
m = xgb.DMatrix(X, enable_categorical=True) # specify categorical data support.
SHAP = booster.predict(m, pred_contribs=True)
margin = booster.predict(m, output_margin=True)
np.testing.assert_allclose(
np.sum(SHAP, axis=len(SHAP.shape) - 1), margin, rtol=1e-3
)


if __name__ == "__main__":
main()
6 changes: 6 additions & 0 deletions tests/python-gpu/test_gpu_demos.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,12 @@ def test_update_process_demo():
subprocess.check_call(cmd)


def test_categorical_demo():
script = os.path.join(td.PYTHON_DEMO_DIR, 'categorical.py')
cmd = ['python', script]
subprocess.check_call(cmd)


@pytest.mark.skipif(**tm.no_dask())
@pytest.mark.skipif(**tm.no_dask_cuda())
@pytest.mark.skipif(**tm.no_cupy())
Expand Down

0 comments on commit d997c96

Please sign in to comment.