Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[BLOCKING] Thread-safe prediction by making the prediction cache thread-local. #5853

Merged
merged 1 commit into from
Jul 30, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 0 additions & 1 deletion include/xgboost/predictor.h
Original file line number Diff line number Diff line change
Expand Up @@ -55,7 +55,6 @@ struct PredictionCacheEntry {
class PredictionContainer {
std::unordered_map<DMatrix *, PredictionCacheEntry> container_;
void ClearExpiredEntries();
std::mutex cache_lock_;

public:
PredictionContainer() = default;
Expand Down
39 changes: 28 additions & 11 deletions src/learner.cc
Original file line number Diff line number Diff line change
Expand Up @@ -221,13 +221,13 @@ void GenericParameter::ConfigureGpuId(bool require_gpu) {
using LearnerAPIThreadLocalStore =
dmlc::ThreadLocalStore<std::map<Learner const *, XGBAPIThreadLocalEntry>>;

using ThreadLocalPredictionCache =
dmlc::ThreadLocalStore<std::map<Learner const *, PredictionContainer>>;

class LearnerConfiguration : public Learner {
protected:
static std::string const kEvalMetric; // NOLINT

protected:
PredictionContainer cache_;

protected:
std::atomic<bool> need_configuration_;
std::map<std::string, std::string> cfg_;
Expand All @@ -244,12 +244,19 @@ class LearnerConfiguration : public Learner {
explicit LearnerConfiguration(std::vector<std::shared_ptr<DMatrix> > cache)
: need_configuration_{true} {
monitor_.Init("Learner");
auto& local_cache = (*ThreadLocalPredictionCache::Get())[this];
for (std::shared_ptr<DMatrix> const& d : cache) {
cache_.Cache(d, GenericParameter::kCpuId);
local_cache.Cache(d, GenericParameter::kCpuId);
}
}
~LearnerConfiguration() override {
auto local_cache = ThreadLocalPredictionCache::Get();
if (local_cache->find(this) != local_cache->cend()) {
local_cache->erase(this);
}
}
// Configuration before data is known.

// Configuration before data is known.
void Configure() override {
// Varient of double checked lock
if (!this->need_configuration_) { return; }
Expand Down Expand Up @@ -316,6 +323,10 @@ class LearnerConfiguration : public Learner {
monitor_.Stop("Configure");
}

virtual PredictionContainer* GetPredictionCache() const {
return &((*ThreadLocalPredictionCache::Get())[this]);
}

void LoadConfig(Json const& in) override {
CHECK(IsA<Object>(in));
Version::Load(in, true);
Expand Down Expand Up @@ -511,7 +522,8 @@ class LearnerConfiguration : public Learner {
if (mparam_.num_feature == 0) {
// TODO(hcho3): Change num_feature to 64-bit integer
unsigned num_feature = 0;
for (auto& matrix : cache_.Container()) {
auto local_cache = this->GetPredictionCache();
for (auto& matrix : local_cache->Container()) {
CHECK(matrix.first);
CHECK(!matrix.second.ref.expired());
const uint64_t num_col = matrix.first->Info().num_col_;
Expand Down Expand Up @@ -948,7 +960,8 @@ class LearnerImpl : public LearnerIO {
this->CheckDataSplitMode();
this->ValidateDMatrix(train.get(), true);

auto& predt = this->cache_.Cache(train, generic_parameters_.gpu_id);
auto local_cache = this->GetPredictionCache();
auto& predt = local_cache->Cache(train, generic_parameters_.gpu_id);

monitor_.Start("PredictRaw");
this->PredictRaw(train.get(), &predt, true);
Expand All @@ -973,9 +986,10 @@ class LearnerImpl : public LearnerIO {
}
this->CheckDataSplitMode();
this->ValidateDMatrix(train.get(), true);
this->cache_.Cache(train, generic_parameters_.gpu_id);
auto local_cache = this->GetPredictionCache();
local_cache->Cache(train, generic_parameters_.gpu_id);

gbm_->DoBoost(train.get(), in_gpair, &cache_.Entry(train.get()));
gbm_->DoBoost(train.get(), in_gpair, &local_cache->Entry(train.get()));
monitor_.Stop("BoostOneIter");
}

Expand All @@ -991,9 +1005,11 @@ class LearnerImpl : public LearnerIO {
metrics_.emplace_back(Metric::Create(obj_->DefaultEvalMetric(), &generic_parameters_));
metrics_.back()->Configure({cfg_.begin(), cfg_.end()});
}

auto local_cache = this->GetPredictionCache();
for (size_t i = 0; i < data_sets.size(); ++i) {
std::shared_ptr<DMatrix> m = data_sets[i];
auto &predt = this->cache_.Cache(m, generic_parameters_.gpu_id);
auto &predt = local_cache->Cache(m, generic_parameters_.gpu_id);
this->ValidateDMatrix(m.get(), false);
this->PredictRaw(m.get(), &predt, false);

Expand Down Expand Up @@ -1030,7 +1046,8 @@ class LearnerImpl : public LearnerIO {
} else if (pred_leaf) {
gbm_->PredictLeaf(data.get(), &out_preds->HostVector(), ntree_limit);
} else {
auto& prediction = cache_.Cache(data, generic_parameters_.gpu_id);
auto local_cache = this->GetPredictionCache();
auto& prediction = local_cache->Cache(data, generic_parameters_.gpu_id);
this->PredictRaw(data.get(), &prediction, training, ntree_limit);
// Copy the prediction cache to output prediction. out_preds comes from C API
out_preds->SetDevice(generic_parameters_.gpu_id);
Expand Down
1 change: 0 additions & 1 deletion src/predictor/predictor.cc
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,6 @@ void PredictionContainer::ClearExpiredEntries() {
}

PredictionCacheEntry &PredictionContainer::Cache(std::shared_ptr<DMatrix> m, int32_t device) {
std::lock_guard<std::mutex> guard { cache_lock_ };
this->ClearExpiredEntries();
container_[m.get()].ref = m;
if (device != GenericParameter::kCpuId) {
Expand Down
1 change: 0 additions & 1 deletion src/tree/updater_quantile_hist.cc
Original file line number Diff line number Diff line change
Expand Up @@ -1384,6 +1384,5 @@ XGBOOST_REGISTER_TREE_UPDATER(QuantileHistMaker, "grow_quantile_histmaker")
[]() {
return new QuantileHistMaker();
});

} // namespace tree
} // namespace xgboost
43 changes: 43 additions & 0 deletions tests/cpp/test_learner.cc
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@
*/
#include <gtest/gtest.h>
#include <vector>
#include <thread>
#include "helpers.h"
#include <dmlc/filesystem.h>

Expand Down Expand Up @@ -176,6 +177,48 @@ TEST(Learner, JsonModelIO) {
}
}

// Crashes the test runner if there are race condiditions.
//
// Build with additional cmake flags to enable thread sanitizer
// which definitely catches problems. Note that OpenMP needs to be
// disabled, otherwise thread sanitizer will also report false
// positives.
//
// ```
// -DUSE_SANITIZER=ON -DENABLED_SANITIZERS=thread -DUSE_OPENMP=OFF
// ```
TEST(Learner, MultiThreadedPredict) {
size_t constexpr kRows = 1000;
size_t constexpr kCols = 1000;

std::shared_ptr<DMatrix> p_dmat{
RandomDataGenerator{kRows, kCols, 0}.GenerateDMatrix()};
p_dmat->Info().labels_.Resize(kRows);
CHECK_NE(p_dmat->Info().num_col_, 0);

std::shared_ptr<DMatrix> p_data{
RandomDataGenerator{kRows, kCols, 0}.GenerateDMatrix()};
CHECK_NE(p_data->Info().num_col_, 0);

std::shared_ptr<Learner> learner{Learner::Create({p_dmat})};
learner->Configure();

std::vector<std::thread> threads;
for (uint32_t thread_id = 0;
thread_id < 2 * std::thread::hardware_concurrency(); ++thread_id) {
threads.emplace_back([learner, p_data] {
size_t constexpr kIters = 10;
auto &entry = learner->GetThreadLocal().prediction_entry;
for (size_t iter = 0; iter < kIters; ++iter) {
learner->Predict(p_data, false, &entry.predictions);
}
});
}
for (auto &thread : threads) {
thread.join();
}
}

TEST(Learner, BinaryModelIO) {
size_t constexpr kRows = 8;
int32_t constexpr kIters = 4;
Expand Down