Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Implement a general array view. #7365

Merged
merged 2 commits into from
Nov 4, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
348 changes: 268 additions & 80 deletions include/xgboost/linalg.h
Original file line number Diff line number Diff line change
@@ -1,113 +1,301 @@
/*!
* Copyright 2021 by Contributors
* Copyright 2021 by XGBoost Contributors
* \file linalg.h
* \brief Linear algebra related utilities.
* \brief Linear algebra related utilities.
*/
#ifndef XGBOOST_LINALG_H_
#define XGBOOST_LINALG_H_

#include <xgboost/span.h>
#include <xgboost/host_device_vector.h>
#include <xgboost/base.h>
#include <xgboost/generic_parameters.h>
#include <xgboost/span.h>

#include <array>
#include <algorithm>
#include <cassert>
#include <type_traits>
#include <utility>
#include <vector>

namespace xgboost {
/*!
* \brief A view over a matrix on contiguous storage.
*
* \tparam T data type of matrix
namespace linalg {
namespace detail {
template <typename S, typename Head, size_t D>
constexpr size_t Offset(S (&strides)[D], size_t n, size_t dim, Head head) {
assert(dim < D);
return n + head * strides[dim];
}

template <typename S, size_t D, typename Head, typename... Tail>
constexpr size_t Offset(S (&strides)[D], size_t n, size_t dim, Head head, Tail &&...rest) {
assert(dim < D);
return Offset(strides, n + (head * strides[dim]), dim + 1, rest...);
}

struct AllTag {};
struct IntTag {};

/**
* \brief Calculate the dimension of sliced tensor.
*/
template <typename T> class MatrixView {
int32_t device_;
common::Span<T> values_;
size_t strides_[2];
size_t shape_[2];

template <typename Vec> static auto InferValues(Vec *vec, int32_t device) {
return device == GenericParameter::kCpuId ? vec->HostSpan()
: vec->DeviceSpan();
}
template <typename T>
constexpr int32_t CalcSliceDim() {
return std::is_same<T, IntTag>::value ? 0 : 1;
}

public:
/*!
* \param vec storage.
* \param strides Strides for matrix.
* \param shape Rows and columns.
* \param device Where the data is stored in.
*/
MatrixView(HostDeviceVector<T> *vec, std::array<size_t, 2> strides,
std::array<size_t, 2> shape, int32_t device)
: device_{device}, values_{InferValues(vec, device)} {
std::copy(strides.cbegin(), strides.cend(), strides_);
std::copy(shape.cbegin(), shape.cend(), shape_);
}
MatrixView(HostDeviceVector<std::remove_const_t<T>> const *vec,
std::array<size_t, 2> strides, std::array<size_t, 2> shape,
int32_t device)
: device_{device}, values_{InferValues(vec, device)} {
std::copy(strides.cbegin(), strides.cend(), strides_);
std::copy(shape.cbegin(), shape.cend(), shape_);
template <typename T, typename... S>
constexpr std::enable_if_t<sizeof...(S) != 0, int32_t> CalcSliceDim() {
return CalcSliceDim<T>() + CalcSliceDim<S...>();
}

template <int32_t D>
constexpr size_t CalcSize(size_t (&shape)[D]) {
size_t size = 1;
for (auto d : shape) {
size *= d;
}
/*! \brief Row major constructor. */
MatrixView(HostDeviceVector<T> *vec, std::array<size_t, 2> shape,
int32_t device)
: device_{device}, values_{InferValues(vec, device)} {
std::copy(shape.cbegin(), shape.cend(), shape_);
strides_[0] = shape[1];
strides_[1] = 1;
return size;
}

template <typename S>
using RemoveCRType = std::remove_const_t<std::remove_reference_t<S>>;

template <typename S>
using IndexToTag = std::conditional_t<std::is_integral<RemoveCRType<S>>::value, IntTag, AllTag>;

template <int32_t n, typename Fn>
XGBOOST_DEVICE constexpr auto UnrollLoop(Fn fn) {
#if defined __CUDA_ARCH__
#pragma unroll n
#endif // defined __CUDA_ARCH__
for (int32_t i = 0; i < n; ++i) {
fn(i);
}
MatrixView(std::vector<T> *vec, std::array<size_t, 2> shape)
: device_{GenericParameter::kCpuId}, values_{*vec} {
CHECK_EQ(vec->size(), shape[0] * shape[1]);
std::copy(shape.cbegin(), shape.cend(), shape_);
strides_[0] = shape[1];
strides_[1] = 1;
}
} // namespace detail

/**
* \brief Specify all elements in the axis is used for slice.
*/
constexpr detail::AllTag All() { return {}; }

/**
* \brief A tensor view with static type and shape. It implements indexing and slicing.
*
* Most of the algorithms in XGBoost are implemented for both CPU and GPU without using
* much linear algebra routines, this class is a helper intended to ease some high level
* operations like indexing into prediction tensor or gradient matrix. It can be passed
* into CUDA kernel as normal argument for GPU algorithms.
*/
template <typename T, int32_t kDim = 5>
class TensorView {
public:
using ShapeT = size_t[kDim];
using StrideT = ShapeT;

private:
StrideT stride_{1};
ShapeT shape_{0};
common::Span<T> data_;
T* ptr_{nullptr}; // pointer of data_ to avoid bound check.

size_t size_{0};
int32_t device_{-1};

// Unlike `Tensor`, the data_ can have arbitrary size since this is just a view.
XGBOOST_DEVICE void CalcSize() {
if (data_.empty()) {
size_ = 0;
} else {
size_ = detail::CalcSize(shape_);
}
}
MatrixView(HostDeviceVector<std::remove_const_t<T>> const *vec,
std::array<size_t, 2> shape, int32_t device)
: device_{device}, values_{InferValues(vec, device)} {
std::copy(shape.cbegin(), shape.cend(), shape_);
strides_[0] = shape[1];
strides_[1] = 1;

struct SliceHelper {
size_t old_dim;
size_t new_dim;
size_t offset;
};

template <int32_t D, typename... S>
XGBOOST_DEVICE SliceHelper MakeSliceDim(size_t old_dim, size_t new_dim, size_t new_shape[D],
size_t new_stride[D], detail::AllTag) const {
new_stride[new_dim] = stride_[old_dim];
new_shape[new_dim] = shape_[old_dim];
return {old_dim + 1, new_dim + 1, 0};
}

XGBOOST_DEVICE T const &operator()(size_t r, size_t c) const {
return values_[strides_[0] * r + strides_[1] * c];
template <int32_t D, typename... S>
XGBOOST_DEVICE SliceHelper MakeSliceDim(size_t old_dim, size_t new_dim, size_t new_shape[D],
size_t new_stride[D], detail::AllTag,
S &&...slices) const {
new_stride[new_dim] = stride_[old_dim];
new_shape[new_dim] = shape_[old_dim];
return MakeSliceDim<D>(old_dim + 1, new_dim + 1, new_shape, new_stride, slices...);
}
XGBOOST_DEVICE T &operator()(size_t r, size_t c) {
return values_[strides_[0] * r + strides_[1] * c];

template <int32_t D, typename Index>
XGBOOST_DEVICE SliceHelper MakeSliceDim(size_t old_dim, size_t new_dim, size_t new_shape[D],
size_t new_stride[D], Index i) const {
return {old_dim + 1, new_dim, stride_[old_dim] * i};
}

auto Strides() const { return strides_; }
auto Shape() const { return shape_; }
auto Values() const { return values_; }
auto Size() const { return shape_[0] * shape_[1]; }
auto DeviceIdx() const { return device_; }
};
template <int32_t D, typename Index, typename... S>
XGBOOST_DEVICE std::enable_if_t<std::is_integral<Index>::value, SliceHelper> MakeSliceDim(
size_t old_dim, size_t new_dim, size_t new_shape[D], size_t new_stride[D], Index i,
S &&...slices) const {
auto offset = stride_[old_dim] * i;
auto res = MakeSliceDim<D>(old_dim + 1, new_dim, new_shape, new_stride, slices...);
return {res.old_dim, res.new_dim, res.offset + offset};
}

/*! \brief A slice for 1 column of MatrixView. Can be extended to row if needed. */
template <typename T> class VectorView {
MatrixView<T> matrix_;
size_t column_;
public:
size_t constexpr static kValueSize = sizeof(T);
size_t constexpr static kDimension = kDim;

public:
explicit VectorView(MatrixView<T> matrix, size_t column)
: matrix_{std::move(matrix)}, column_{column} {}
/**
* \brief Create a tensor with data and shape.
*
* \tparam I Type of the shape array element.
* \tparam D Size of the shape array, can be lesser than or equal to tensor dimension.
*
* \param data Raw data input, can be const if this tensor has const type in its
* template parameter.
* \param shape shape of the tensor
* \param device Device ordinal
*/
template <typename I, int32_t D>
XGBOOST_DEVICE TensorView(common::Span<T> data, I const (&shape)[D], int32_t device)
: data_{data}, ptr_{data_.data()}, device_{device} {
static_assert(D > 0 && D <= kDim, "Invalid shape.");
// shape
detail::UnrollLoop<D>([&](auto i) { shape_[i] = shape[i]; });
for (auto i = D; i < kDim; ++i) {
shape_[i] = 1;
}
// stride
stride_[kDim - 1] = 1;
for (int32_t s = kDim - 2; s >= 0; --s) {
stride_[s] = shape_[s + 1] * stride_[s + 1];
}
this->CalcSize();
};

XGBOOST_DEVICE T &operator[](size_t i) {
return matrix_(i, column_);
/**
* \brief Create a tensor with data, shape and strides. Don't use this constructor if
* stride can be calculated from shape.
*/
template <typename I, int32_t D>
XGBOOST_DEVICE TensorView(common::Span<T> data, I const (&shape)[D], I const (&stride)[D],
int32_t device)
: data_{data}, ptr_{data_.data()}, device_{device} {
static_assert(D == kDim, "Invalid shape & stride.");
detail::UnrollLoop<D>([&](auto i) {
shape_[i] = shape[i];
stride_[i] = stride[i];
});
this->CalcSize();
};

XGBOOST_DEVICE TensorView(TensorView const &that)
: data_{that.data_}, ptr_{data_.data()}, size_{that.size_}, device_{that.device_} {
detail::UnrollLoop<kDim>([&](auto i) {
stride_[i] = that.stride_[i];
shape_[i] = that.shape_[i];
});
}

XGBOOST_DEVICE T const &operator[](size_t i) const {
return matrix_(i, column_);
/**
* \brief Index the tensor to obtain a scalar value.
*
* \code
*
* // Create a 3-dim tensor.
* Tensor<float, 3> t {data, shape, 0};
* float pi = 3.14159;
* t(1, 2, 3) = pi;
* ASSERT_EQ(t(1, 2, 3), pi);
*
* \endcode
*/
template <typename... Index>
XGBOOST_DEVICE T &operator()(Index &&...index) {
static_assert(sizeof...(index) <= kDim, "Invalid index.");
size_t offset = detail::Offset(stride_, 0ul, 0ul, index...);
return ptr_[offset];
}
/**
* \brief Index the tensor to obtain a scalar value.
*/
template <typename... Index>
XGBOOST_DEVICE T const &operator()(Index &&...index) const {
static_assert(sizeof...(index) <= kDim, "Invalid index.");
size_t offset = detail::Offset(stride_, 0ul, 0ul, index...);
return ptr_[offset];
}

size_t Size() { return matrix_.Shape()[0]; }
int32_t DeviceIdx() const { return matrix_.DeviceIdx(); }
/**
* \brief Slice the tensor. The returned tensor has inferred dim and shape.
*
* \code
*
* // Create a 3-dim tensor.
* Tensor<float, 3> t {data, shape, 0};
* // s has 2 dimensions (matrix)
* auto s = t.Slice(1, All(), All());
*
* \endcode
*/
template <typename... S>
XGBOOST_DEVICE auto Slice(S &&...slices) const {
static_assert(sizeof...(slices) <= kDim, "Invalid slice.");
int32_t constexpr kNewDim{detail::CalcSliceDim<detail::IndexToTag<S>...>()};
size_t new_shape[kNewDim];
size_t new_stride[kNewDim];
auto res = MakeSliceDim<kNewDim>(size_t(0), size_t(0), new_shape, new_stride, slices...);
// ret is a different type due to changed dimension, so we can not access its private
// fields.
TensorView<T, kNewDim> ret{data_.subspan(data_.empty() ? 0 : res.offset), new_shape, new_stride,
device_};
return ret;
}

XGBOOST_DEVICE auto Shape() const { return common::Span<size_t const, kDim>{shape_}; }
/**
* Get the shape for i^th dimension
*/
XGBOOST_DEVICE auto Shape(size_t i) const { return shape_[i]; }
XGBOOST_DEVICE auto Stride() const { return common::Span<size_t const, kDim>{stride_}; }
/**
* Get the stride for i^th dimension, stride is specified as number of items instead of bytes.
*/
XGBOOST_DEVICE auto Stride(size_t i) const { return stride_[i]; }

XGBOOST_DEVICE auto cbegin() const { return data_.cbegin(); } // NOLINT
XGBOOST_DEVICE auto cend() const { return data_.cend(); } // NOLINT
XGBOOST_DEVICE auto begin() { return data_.begin(); } // NOLINT
XGBOOST_DEVICE auto end() { return data_.end(); } // NOLINT

XGBOOST_DEVICE size_t Size() const { return size_; }
XGBOOST_DEVICE auto Values() const { return data_; }
XGBOOST_DEVICE auto DeviceIdx() const { return device_; }
};
} // namespace xgboost

/**
* \brief A view over a vector, specialization of Tensor
*
* \tparam T data type of vector
*/
template <typename T>
using VectorView = TensorView<T, 1>;

/**
* \brief A view over a matrix, specialization of Tensor.
*
* \tparam T data type of matrix
*/
template <typename T>
using MatrixView = TensorView<T, 2>;
} // namespace linalg
} // namespace xgboost
#endif // XGBOOST_LINALG_H_
2 changes: 1 addition & 1 deletion include/xgboost/tree_updater.h
Original file line number Diff line number Diff line change
Expand Up @@ -72,7 +72,7 @@ class TreeUpdater : public Configurable {
* updated by the time this function returns.
*/
virtual bool UpdatePredictionCache(const DMatrix * /*data*/,
VectorView<float> /*out_preds*/) {
linalg::VectorView<float> /*out_preds*/) {
return false;
}

Expand Down
Loading