Skip to content

Dual Adversarial Autoencoder for Generating Set-valued Sequences

Notifications You must be signed in to change notification settings

donalee/DualAAE-EHR

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Dual Adversarial AutoEncoder (DAAE) for EHR Generation

  • This is a PyTorch implementation of "Generating sequential electronic health records using dual adversarial autoencoder", published in Journal of the American Medical Informatics Association (JAMIA) 2020.

Overview

The DAAE architecture that is composed of 1) the seq2seq autoencoder, 2) the inner GAN, and 3) the outer GAN.

The detailed architecture of the seq2seq autoencoder. The embedding layer encodes the semantics of all the medical entities, and the GRU layer learns the temporal contexts within patients' sequential records.

Running the Code

Step 1. Installing Python and PyTorch

  • Install Python 3 and PyTorch.

Step 2. Preparing Data

  • You need .npy (numpy file format) files of EHR.
  • It should be in the form of a dictionary, whose key is the patient-id and value is the set-valued sequence of the patient.
  • For example,
  {   17: [['7455', '45829', 'V1259', '2724'], ['4239', '5119', '78551', '4589', '311', '7220', '71946', '2724']],
      21: [['41071', '78551', '42731', '1122', '2720', '2749', 'V1046', '43889'], ['0388', '78552', '40391', '42731',  '25000', '2859', '43889', '2749', '41401', '185', '4439', '2449']],
      ...,
   99982: [['42823', '4254', '2875', '5303', '4280', 'V5861', '45829'], ['4280', '42823', '5849', '4254', '2763', '42731', '78729', '2768'], ['5849', '42731', '4280', '2875','V422', '7994']]}
  • Each entity (i.e., diagnosis code) must be provided as string format.
  • In the input data directory, two .npy files should be required respecitvely for training and validation: ehr.train.npy and ehr.valid.npy.

Step 3. Running DAAE on your Data

  • Now, you are ready to learn the sequences about real patients and synthesize fake ones.
  python train_daae.py --data_dir <input_directory> --create_data --gendata_size <#_fake_sequences>
  • Finally, you will obtain the two files about fake patients: daae_generated_codes.npy and daae_generated_patients.npy.
  • These are basic arguments you can specify:
Argument Description
--data_dir The path to the input nummpy files
--max_sequence_length The maximum length of sequential records (default: 10)
--max_visit_length The maximum number of entities in a single record (default: 40)
--gendata_size The number of fake sequences to be generated (default: 100,000)
--batch_size The size of a single mini-batch for set-valued sequences (default: 32)
--learning_rate The initial learning rate for the ADMM optimizer (default: 0.001)
--epochs The total number of epochs for training (default: 500)
--gpu_devidx The index of GPU to be used (default: 0)
  • The detailed architecture of each componenet (i.e., encoder, decoder, generator, and inner/outer critics) can be specified by using the following arguments:
Argument Description
--rnn_type The type of RNN encoder and decoder (default: 'gru')
--embedding_size The dimensionality of the entity embedding layer (default: 128)
--hidden_size The dimensionality of hidden vectors in RNN encoder and decoder (default: 128)
--noise_size The dimensionality of noise vectors (default: 128)
--latent_size The dimensionality of code vectors (default: 128)
--filter_size The number of conv filters in the outer critic (default: 16)
--window_sizes The widths of conv filters in the outer critic (default: [2, 3])
--bidirectional The flag indicating the RNN encoder is bidirectional (default: False)
--entity_dropout The entity dropout rate for decoder input sequences (default: 0.05)
--embedding_dropout The dropout rate for the entity embedding layer (default: 0.5)
--feature_dropout The dropout rate for the fc layer in the outer critic (default: 0.5)
--gmlp_archs The MLP architecture of the generator (default: [128, 128])
--dmlp_archs The MLP architecture of the inner critic (default: [256, 128])

Step 4. Using a differentially-private (DP) optimizer

  • If you need to guarantee the synthetic samples do not leak private information about the training data, you can use a DP optimizer when training the model.
  • Install the PyVacy package and run the code with --dp_sgd set to True.
  • You can control the privacy budget by the following arguments: --noise_multiplier, --l2_norm_clip, and --delta.
  • Note that there is a trade-off between the privacy guarantee and the quality of generated sequences.

Citation

@article{lee2020generating,
  author = {Lee, Dongha and Yu, Hwanjo and Jiang, Xiaoqian and Rogith, Deevakar and Gudala, Meghana and Tejani, Mubeen and Zhang, Qiuchen and Xiong, Li},
  title = {Generating sequential electronic health records using dual adversarial autoencoder},
  journal = {Journal of the American Medical Informatics Association},
  volume = {27},
  number = {9},
  pages = {1411-1419},
  year = {2020},
  month = {09}
}

About

Dual Adversarial Autoencoder for Generating Set-valued Sequences

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages