- Pytorch: 0.4+
- Python: 3.6+
An Pytorch Implementation of variational auto-encoder (VAE) for MNIST descripbed in the paper:
- Auto-Encoding Variational Bayes by Kingma et al.
This repo. is developed based on Tensorflow-mnist-vae.
NOTICE:
tf.nn.dropout(keep_prob=0.9)
torch.nn.Dropout(p=1-keep_prob)
Well trained VAE must be able to reproduce input image.
Figure 5 in the paper shows reproduce performance of learned generative models for different dimensionalities.
The following results can be reproduced with command:
python run_main.py --dim_z <each value> --num_epochs 60
Input image | 2-D latent space | 5-D latent space | 10-D latent space | 20-D latent space |
When training, salt & pepper noise is added to input image, so that VAE can reduce noise and restore original input image.
The following results can be reproduced with command:
python run_main.py --dim_z 20 --add_noise True --num_epochs 40
Original input image | Input image with noise | Restored image via VAE |
Visualizations of learned data manifold for generative models with 2-dim. latent space are given in Figure. 4 in the paper.
The following results can be reproduced with command:
python run_main.py --dim_z 2 --num_epochs 60 --PMLR True
Learned MNIST manifold | Distribution of labeled data |
- Pytorch
- Python packages : numpy, scipy, PIL(or Pillow), matplotlib
python run_main.py --dim_z <latent vector dimension>
Example:
python run_main.py --dim_z 20
Required :
--dim_z
: Dimension of latent vector. Default:20
Optional :
--results_path
: File path of output images. Default:results
--add_noise
: Boolean for adding salt & pepper noise to input image. Default:False
--n_hidden
: Number of hidden units in MLP. Default:500
--learn_rate
: Learning rate for Adam optimizer. Default:1e-3
--num_epochs
: The number of epochs to run. Default:20
--batch_size
: Batch size. Default:128
--PRR
: Boolean for plot-reproduce-result. Default:True
--PRR_n_img_x
: Number of images along x-axis. Default:10
--PRR_n_img_y
: Number of images along y-axis. Default:10
--PRR_resize_factor
: Resize factor for each displayed image. Default:1.0
--PMLR
: Boolean for plot-manifold-learning-result. Default:False
--PMLR_n_img_x
: Number of images along x-axis. Default:20
--PMLR_n_img_y
: Number of images along y-axis. Default:20
--PMLR_resize_factor
: Resize factor for each displayed image. Default:1.0
--PMLR_n_samples
: Number of samples in order to get distribution of labeled data. Default:5000
The implementation is based on the projects:
[1] https://github.com/oduerr/dl_tutorial/tree/master/tensorflow/vae
[2] https://github.com/fastforwardlabs/vae-tf/tree/master
[3] https://github.com/kvfrans/variational-autoencoder
[4] https://github.com/altosaar/vae