pumpkin-pytorch
python /code/src/fashion_mnist/train.py
git clone --recurse-submodules https://github.com/mikel-brostrom/Yolov5_DeepSort_Pytorch.git
git submodule update --init
pip3.9 install -r requirements.txt -i https://pypi.doubanio.com/simple/
python3.9 track.py --source 0
python3.9 track.py --source 0 --show-vid
python3.9 track.py --source 0 --save-vid
python3.9 track.py --source 'k3008u2szwb.mp4' --show-vid
python3.9 track.py --source 'k3008u2szwb.mp4' --save-vid
du -ah
du -h -d 1
./deep_sort_pytorch/deep_sort/deep/checkpoint/ckpt.t7
wget https://github.com/ultralytics/yolov5/releases/download/v6.0/yolov5l.pt
wget https://github.com/ultralytics/yolov5/releases/download/v6.0/yolov5n.pt
wget https://github.com/ultralytics/yolov5/releases/download/v6.0/yolov5s.pt
wget https://github.com/ultralytics/yolov5/releases/download/v6.0/yolov5m.pt
wget https://github.com/ultralytics/yolov5/releases/download/v6.0/yolov5x.pt
wget https://github.com/ultralytics/yolov5/releases/download/v6.0/yolov5n6.pt
wget https://github.com/ultralytics/yolov5/releases/download/v6.0/yolov5s6.pt
wget https://github.com/ultralytics/yolov5/releases/download/v6.0/yolov5m6.pt
wget https://github.com/ultralytics/yolov5/releases/download/v6.0/yolov5l6.pt
wget https://github.com/ultralytics/yolov5/releases/download/v6.0/yolov5x6.pt
https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html
https://pjreddie.com/darknet/yolo/
yolov5l.pt
https://dl.teamviewer.com/download/version_15x/TeamViewer.dmg
https://dl.teamviewer.cn/download/version_15x/TeamViewer.dmg
vim ./yolov5/utils/downloads.py
assets = ['yolov5n.pt', 'yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt',
'yolov5n6.pt', 'yolov5s6.pt', 'yolov5m6.pt', 'yolov5l6.pt', 'yolov5x6.pt']
Real-time multi-object tracker using YOLO v5 and deep sort
real time object track
virtualenv
rtmp 测试地址
rtmp test address
rtmp server
cd /model
python /code/src/fashion_mnist/train.py
mv model pytorchModel
python3.9 track.py -h
usage: track.py [-h] [--yolo_weights YOLO_WEIGHTS [YOLO_WEIGHTS ...]] [--deep_sort_weights DEEP_SORT_WEIGHTS]
[--source SOURCE] [--output OUTPUT] [--imgsz IMGSZ [IMGSZ ...]] [--conf-thres CONF_THRES]
[--iou-thres IOU_THRES] [--fourcc FOURCC] [--device DEVICE] [--show-vid] [--save-vid]
[--save-txt] [--classes CLASSES [CLASSES ...]] [--agnostic-nms] [--augment] [--evaluate]
[--config_deepsort CONFIG_DEEPSORT] [--half] [--visualize] [--max-det MAX_DET] [--dnn]
optional arguments:
-h, --help show this help message and exit
--yolo_weights YOLO_WEIGHTS [YOLO_WEIGHTS ...]
model.pt path(s)
--deep_sort_weights DEEP_SORT_WEIGHTS
ckpt.t7 path
--source SOURCE source
--output OUTPUT output folder
--imgsz IMGSZ [IMGSZ ...], --img IMGSZ [IMGSZ ...], --img-size IMGSZ [IMGSZ ...]
inference size h,w
--conf-thres CONF_THRES
object confidence threshold
--iou-thres IOU_THRES
IOU threshold for NMS
--fourcc FOURCC output video codec (verify ffmpeg support)
--device DEVICE cuda device, i.e. 0 or 0,1,2,3 or cpu
--show-vid display tracking video results
--save-vid save video tracking results
--save-txt save MOT compliant results to *.txt
--classes CLASSES [CLASSES ...]
filter by class: --class 0, or --class 16 17
--agnostic-nms class-agnostic NMS
--augment augmented inference
--evaluate augmented inference
--config_deepsort CONFIG_DEEPSORT
--half use FP16 half-precision inference
--visualize visualize features
--max-det MAX_DET maximum detection per image
--dnn use OpenCV DNN for ONNX inference