forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
ENH: add .ngroup() method to groupby objects (pandas-dev#14026)
- Loading branch information
Showing
7 changed files
with
322 additions
and
60 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,197 @@ | ||
# -*- coding: utf-8 -*- | ||
from __future__ import print_function | ||
|
||
import numpy as np | ||
|
||
from pandas import (DataFrame, Series, MultiIndex) | ||
from pandas.util.testing import assert_series_equal | ||
from pandas.compat import (range, product as cart_product) | ||
|
||
|
||
class TestCounting(object): | ||
|
||
def test_cumcount(self): | ||
df = DataFrame([['a'], ['a'], ['a'], ['b'], ['a']], columns=['A']) | ||
g = df.groupby('A') | ||
sg = g.A | ||
|
||
expected = Series([0, 1, 2, 0, 3]) | ||
|
||
assert_series_equal(expected, g.cumcount()) | ||
assert_series_equal(expected, sg.cumcount()) | ||
|
||
def test_cumcount_empty(self): | ||
ge = DataFrame().groupby(level=0) | ||
se = Series().groupby(level=0) | ||
|
||
# edge case, as this is usually considered float | ||
e = Series(dtype='int64') | ||
|
||
assert_series_equal(e, ge.cumcount()) | ||
assert_series_equal(e, se.cumcount()) | ||
|
||
def test_cumcount_dupe_index(self): | ||
df = DataFrame([['a'], ['a'], ['a'], ['b'], ['a']], columns=['A'], | ||
index=[0] * 5) | ||
g = df.groupby('A') | ||
sg = g.A | ||
|
||
expected = Series([0, 1, 2, 0, 3], index=[0] * 5) | ||
|
||
assert_series_equal(expected, g.cumcount()) | ||
assert_series_equal(expected, sg.cumcount()) | ||
|
||
def test_cumcount_mi(self): | ||
mi = MultiIndex.from_tuples([[0, 1], [1, 2], [2, 2], [2, 2], [1, 0]]) | ||
df = DataFrame([['a'], ['a'], ['a'], ['b'], ['a']], columns=['A'], | ||
index=mi) | ||
g = df.groupby('A') | ||
sg = g.A | ||
|
||
expected = Series([0, 1, 2, 0, 3], index=mi) | ||
|
||
assert_series_equal(expected, g.cumcount()) | ||
assert_series_equal(expected, sg.cumcount()) | ||
|
||
def test_cumcount_groupby_not_col(self): | ||
df = DataFrame([['a'], ['a'], ['a'], ['b'], ['a']], columns=['A'], | ||
index=[0] * 5) | ||
g = df.groupby([0, 0, 0, 1, 0]) | ||
sg = g.A | ||
|
||
expected = Series([0, 1, 2, 0, 3], index=[0] * 5) | ||
|
||
assert_series_equal(expected, g.cumcount()) | ||
assert_series_equal(expected, sg.cumcount()) | ||
|
||
def test_ngroup(self): | ||
df = DataFrame({'A': list('aaaba')}) | ||
g = df.groupby('A') | ||
sg = g.A | ||
|
||
expected = Series([0, 0, 0, 1, 0]) | ||
|
||
assert_series_equal(expected, g.ngroup()) | ||
assert_series_equal(expected, sg.ngroup()) | ||
|
||
def test_ngroup_distinct(self): | ||
df = DataFrame({'A': list('abcde')}) | ||
g = df.groupby('A') | ||
sg = g.A | ||
|
||
expected = Series(range(5), dtype='int64') | ||
|
||
assert_series_equal(expected, g.ngroup()) | ||
assert_series_equal(expected, sg.ngroup()) | ||
|
||
def test_ngroup_one_group(self): | ||
df = DataFrame({'A': [0] * 5}) | ||
g = df.groupby('A') | ||
sg = g.A | ||
|
||
expected = Series([0] * 5) | ||
|
||
assert_series_equal(expected, g.ngroup()) | ||
assert_series_equal(expected, sg.ngroup()) | ||
|
||
def test_ngroup_empty(self): | ||
ge = DataFrame().groupby(level=0) | ||
se = Series().groupby(level=0) | ||
|
||
# edge case, as this is usually considered float | ||
e = Series(dtype='int64') | ||
|
||
assert_series_equal(e, ge.ngroup()) | ||
assert_series_equal(e, se.ngroup()) | ||
|
||
def test_ngroup_series_matches_frame(self): | ||
df = DataFrame({'A': list('aaaba')}) | ||
s = Series(list('aaaba')) | ||
|
||
assert_series_equal(df.groupby(s).ngroup(), | ||
s.groupby(s).ngroup()) | ||
|
||
def test_ngroup_dupe_index(self): | ||
df = DataFrame({'A': list('aaaba')}, index=[0] * 5) | ||
g = df.groupby('A') | ||
sg = g.A | ||
|
||
expected = Series([0, 0, 0, 1, 0], index=[0] * 5) | ||
|
||
assert_series_equal(expected, g.ngroup()) | ||
assert_series_equal(expected, sg.ngroup()) | ||
|
||
def test_ngroup_mi(self): | ||
mi = MultiIndex.from_tuples([[0, 1], [1, 2], [2, 2], [2, 2], [1, 0]]) | ||
df = DataFrame({'A': list('aaaba')}, index=mi) | ||
g = df.groupby('A') | ||
sg = g.A | ||
expected = Series([0, 0, 0, 1, 0], index=mi) | ||
|
||
assert_series_equal(expected, g.ngroup()) | ||
assert_series_equal(expected, sg.ngroup()) | ||
|
||
def test_ngroup_groupby_not_col(self): | ||
df = DataFrame({'A': list('aaaba')}, index=[0] * 5) | ||
g = df.groupby([0, 0, 0, 1, 0]) | ||
sg = g.A | ||
|
||
expected = Series([0, 0, 0, 1, 0], index=[0] * 5) | ||
|
||
assert_series_equal(expected, g.ngroup()) | ||
assert_series_equal(expected, sg.ngroup()) | ||
|
||
def test_ngroup_descending(self): | ||
df = DataFrame(['a', 'a', 'b', 'a', 'b'], columns=['A']) | ||
g = df.groupby(['A']) | ||
|
||
ascending = Series([0, 0, 1, 0, 1]) | ||
descending = Series([1, 1, 0, 1, 0]) | ||
|
||
assert_series_equal(descending, (g.ngroups - 1) - ascending) | ||
assert_series_equal(ascending, g.ngroup(ascending=True)) | ||
assert_series_equal(descending, g.ngroup(ascending=False)) | ||
|
||
def test_ngroup_matches_cumcount(self): | ||
# verify one manually-worked out case works | ||
df = DataFrame([['a', 'x'], ['a', 'y'], ['b', 'x'], | ||
['a', 'x'], ['b', 'y']], columns=['A', 'X']) | ||
g = df.groupby(['A', 'X']) | ||
g_ngroup = g.ngroup() | ||
g_cumcount = g.cumcount() | ||
expected_ngroup = Series([0, 1, 2, 0, 3]) | ||
expected_cumcount = Series([0, 0, 0, 1, 0]) | ||
|
||
assert_series_equal(g_ngroup, expected_ngroup) | ||
assert_series_equal(g_cumcount, expected_cumcount) | ||
|
||
def test_ngroup_cumcount_pair(self): | ||
# brute force comparison for all small series | ||
for p in cart_product(range(3), repeat=4): | ||
df = DataFrame({'a': p}) | ||
g = df.groupby(['a']) | ||
|
||
order = sorted(set(p)) | ||
ngroupd = [order.index(val) for val in p] | ||
cumcounted = [p[:i].count(val) for i, val in enumerate(p)] | ||
|
||
assert_series_equal(g.ngroup(), Series(ngroupd)) | ||
assert_series_equal(g.cumcount(), Series(cumcounted)) | ||
|
||
def test_ngroup_respects_groupby_order(self): | ||
np.random.seed(0) | ||
df = DataFrame({'a': np.random.choice(list('abcdef'), 100)}) | ||
for sort_flag in (False, True): | ||
g = df.groupby(['a'], sort=sort_flag) | ||
df['group_id'] = -1 | ||
df['group_index'] = -1 | ||
|
||
for i, (_, group) in enumerate(g): | ||
df.loc[group.index, 'group_id'] = i | ||
for j, ind in enumerate(group.index): | ||
df.loc[ind, 'group_index'] = j | ||
|
||
assert_series_equal(Series(df['group_id'].values), | ||
g.ngroup()) | ||
assert_series_equal(Series(df['group_index'].values), | ||
g.cumcount()) |
Oops, something went wrong.