-
Notifications
You must be signed in to change notification settings - Fork 14
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #4 from dzhwinter/feature/tensorflow_lstm
"add tensorflow lstm"
- Loading branch information
Showing
1 changed file
with
127 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,127 @@ | ||
from __future__ import absolute_import | ||
from __future__ import division | ||
from __future__ import print_function | ||
|
||
import numpy as np | ||
import time | ||
|
||
import tensorflow as tf | ||
from tensorflow.contrib import rnn | ||
import paddle.v2 as paddle | ||
|
||
FLAGS = tf.app.flags.FLAGS | ||
tf.app.flags.DEFINE_integer('batch_size', 32, """Batch size.""") | ||
tf.app.flags.DEFINE_integer('emb_dim', 32, "The embedding dim.") | ||
tf.app.flags.DEFINE_integer('stacked_num', 3, "Stacked LSTM Layer size.") | ||
tf.app.flags.DEFINE_integer('seq_len', 80, | ||
"The sequence length of one sentence.") | ||
tf.app.flags.DEFINE_integer('iterations', 35, """Number of batches to run.""") | ||
tf.app.flags.DEFINE_integer('pass_num', 100, "The number of passes.") | ||
tf.app.flags.DEFINE_boolean('infer_only', False, | ||
"""Only run the forward pass.""") | ||
|
||
|
||
def print_arguments(args): | ||
print('----------- Configuration Arguments -----------') | ||
for arg, value in sorted(args.iteritems()): | ||
print('%s: %s' % (arg, value)) | ||
print('------------------------------------------------') | ||
|
||
|
||
def lstm_model(data, dict_dim, class_dim=2): | ||
batch_size = FLAGS.batch_size | ||
emb_dim = FLAGS.emb_dim | ||
seq_len = FLAGS.seq_len | ||
stacked_num = FLAGS.stacked_num | ||
|
||
with tf.name_scope("lstm") as scope: | ||
embedding = tf.Variable(tf.truncated_normal([dict_dim, emb_dim])) | ||
|
||
# NOTE(dzhwinter) : paddle dynamic_lstm(lstm_op) do not have peepholes | ||
|
||
lstm_input = tf.nn.embedding_lookup(embedding, data) | ||
|
||
lstm_input = tf.unstack(lstm_input, seq_len, 1) | ||
lstm_cell = tf.nn.rnn_cell.LSTMCell( | ||
num_units=emb_dim, use_peepholes=False) | ||
lstm_cell = tf.nn.rnn_cell.MultiRNNCell([lstm_cell] * stacked_num) | ||
|
||
outputs, states = rnn.static_rnn( | ||
lstm_cell, lstm_input, dtype=tf.float32) | ||
last_output = outputs[-1] | ||
|
||
fc_weights = tf.Variable( | ||
tf.truncated_normal([emb_dim, class_dim]), dtype=tf.float32) | ||
bias = tf.Variable( | ||
tf.constant( | ||
value=0.0, shape=[class_dim], dtype=tf.float32)) | ||
|
||
prediction = tf.matmul(last_output, fc_weights) + bias | ||
|
||
return prediction | ||
|
||
|
||
def padding_data(data, padding_size, value): | ||
data = data + [value] * padding_size | ||
return data[:padding_size] | ||
|
||
|
||
def run_benchmark(model): | ||
start_time = time.time() | ||
|
||
word_dict = paddle.dataset.imdb.word_dict() | ||
print("load word dict successfully") | ||
dict_dim = len(word_dict) | ||
train_reader = paddle.batch( | ||
paddle.reader.shuffle( | ||
paddle.dataset.imdb.train(word_dict), | ||
buf_size=25000), # imdb is in buf_size | ||
batch_size=FLAGS.batch_size) | ||
|
||
data = tf.placeholder(tf.int64, shape=[None, FLAGS.seq_len]) | ||
label = tf.placeholder(tf.int64, shape=[None]) | ||
prediction = model(data, dict_dim) | ||
cost = tf.nn.softmax_cross_entropy_with_logits( | ||
labels=tf.one_hot(label, 2), logits=prediction) | ||
avg_cost = tf.reduce_mean(cost) | ||
adam_optimizer = tf.train.AdamOptimizer(learning_rate=0.002) | ||
train_op = adam_optimizer.minimize(avg_cost) | ||
|
||
correct = tf.equal(tf.argmax(prediction, 1), label) | ||
accuracy = tf.reduce_mean(tf.cast(correct, tf.float32)) | ||
pass_accuracy = tf.metrics.accuracy(label, tf.argmax(prediction, axis=1)) | ||
|
||
config = tf.ConfigProto( | ||
intra_op_parallelism_threads=1, inter_op_parallelism_threads=1) | ||
with tf.Session(config=config) as sess: | ||
init_g = tf.global_variables_initializer() | ||
init_l = tf.local_variables_initializer() | ||
sess.run(init_l) | ||
sess.run(init_g) | ||
for it in xrange(FLAGS.pass_num): | ||
if it == FLAGS.iterations: | ||
break | ||
for batch in train_reader(): | ||
|
||
word_data = np.array( | ||
map(lambda x: padding_data(x[0], FLAGS.seq_len, 0), | ||
batch)).astype("int64") | ||
label_data = np.array(map(lambda x: x[1], batch)).astype( | ||
"int64") | ||
|
||
_, loss, acc, pass_acc = sess.run( | ||
[train_op, avg_cost, accuracy, pass_accuracy], | ||
feed_dict={data: word_data, | ||
label: label_data}) | ||
print("Iter: %d, loss: %s, acc: %s, pass_acc: %s" % | ||
(it, str(loss), str(acc), str(pass_acc))) | ||
|
||
|
||
def main(_): | ||
args = dict(tf.flags.FLAGS.__flags) | ||
print_arguments(args) | ||
run_benchmark(lstm_model) | ||
|
||
|
||
if __name__ == '__main__': | ||
tf.app.run() |