Skip to content

endiqq/Multi-Feature-ViT

Repository files navigation

Multi-Feature Vision Transformer via Self-Supervised Learning for COVID-19 Diagnosis

Introduction

This is the code to repoduce the study of [Multi-Feature Vision Transformer via Self-Supervised Representation Learning for Improvement of COVID-19 Diagnosis](arxiv update soon). Please cite our study if you are using this dataset or referring to our method.

Network Structure

NN_structure3

# Multi-Feature-Semi-Supervised-Learning_COVID-19 (Pytorch)

Result

  • Test-1
Method Labeled Sample (%) Precision Recall F1-Scores Top-1(%)
MF-ViT CA 10 0.91 0.91 0.91 91.10
MF-ViT CA 30 0.93 0.93 0.93 93.27
MF-ViT CA 100 0.95 0.95 0.95 95.03

Usage

  • Dataset and Trained model weights:

    • Download them from Kaggle. CXR folder are all origianl CXR images and Enh folder are all corresponding enhanced images.
  • Preparation:

    • Create a folder named MoCo-COVID to save all downloaded files from this repo and files from Kaggle in one folder.
  • Train MoCo-COVID:

    • python MoCo-COVID/moco_pretraining/moco/main_covid_mocov3based_single_img_type_5draws_mocov3structure_mocov2loss_vitsmall.py -a vit_small -b 16 --optimizer=adamw --lr=1.5e-4 --weight-decay=.1 --epochs=30 --warmup-epochs=4 --stop-grad-conv1 --moco-m-cos --moco-t=.2 --multiprocessing-distributed --world-size 1 --rank 0 --aug-setting chexpert --rotate 10 --exp-name --train_data data --cos (train_data: data=original CXR image; Train_Mix=enhanced CXR image)
  • Finetune MoCo-COVID-LP:

    • python MoCo-COVID/moco_pretraining/moco/main_vit_covid_test_val_single_img_type_5draws_rev_v2loss_v3structure_vitsmall.py -a vit_small --lr 3 --batch-size 16 --epochs 90 --exp-name --pretrained --maintain-ratio --rotate --aug-setting chexpert --train_data data --optimizer sgd --cos (--pretraind = pretrained weights)
  • Finetune MoCo-COVID-FT:

    • python MoCo-COVID/moco_pretraining/moco/main_vit_covid_test_val_single_img_type_5draws_rev_v2loss_v3structure_vitsmall.py -a vit_small --lr 3 --batch-size 16 --epochs 90 --exp-name --pretrained --maintain-ratio --rotate --aug-setting chexpert --train_data data --optimizer sgd --cos --semi-supervised (--pretraind = pretrained weights)
  • Finetuen MF-ViT CA

    • python MoCo-COVID/main_vit_covid_test_val_single_img_type_5draws_rev_v2loss_v3structure_crossvit_2vits_2additionaloutputs_trainval_sum.py -a vit_small --batch-size 32 --exp-name --pretrained --pretrained_enh --maintain-ratio --rotate --aug-setting chexpert --lr 1.5e-4 --cos --ep 25

About

Fusion_ViT

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages