Skip to content

Forge AI agents from simple Python functions. Turn your docstrings into powerful prompts and weave complex AI workflows with ease.

Notifications You must be signed in to change notification settings

enlighten5/Prompteus

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Prompteus

Forge AI agents from simple Python functions. Turn your docstrings into powerful prompts and weave complex AI workflows with ease.

🌟 Features

  • Simple Decorators: Transform ordinary functions into LLM-powered agents with a single decorator.
  • Docstring Prompts: Utilize Python's natural docstring syntax to define your AI prompts.
  • Flexible Agent Creation: Easily create and customize AI agents for various tasks.
  • Graph-based Workflows: Construct complex AI workflows by connecting agents in a graph structure.
  • Seamless Integration: Works smoothly with popular LLM libraries like LangChain.

🚀 Installation

Install Prompteus using pip:

pip install prompteus

🔧 Usage

Simple LLM Interaction

from prompteus import llm_interact

@llm_interact(model_name="gpt-3.5-turbo")
def generate_story(theme: str):
    """
    Create a short story based on the given theme.
    The story should be engaging and no longer than 100 words.
    """
    return theme

story = generate_story("A robot learning to paint")
print(story)

Create an AI Agent

from prompteus import agent
from your_custom_tools import ImageAnalysisTool

@agent(model_name="gpt-3.5-turbo", tools=[ImageAnalysisTool()])
def image_analyst():
    """
    Analyze the given image and provide a detailed description.
    Use the ImageAnalysisTool when needed to get more information about specific elements in the image.
    """
    return {}  # Additional context if needed

image_agent, _ = image_analyst()
result = await image_agent({"input": "path/to/image.jpg"})
print(result['messages'][-1].content)

Constructing an Agent Workflow

from prompteus import agent_graph

@agent_graph()
async def analyze_and_critique(image_path: str):
    graph_structure = {
        'nodes': {
            'image_analyst': {'agent': image_analyst()},
            'art_critic': {'agent': art_critic()},
        },
        'edges': [
            {'from': 'image_analyst', 'to': 'art_critic'},
        ],
        'entry_point': 'image_analyst'
    }
    return graph_structure, image_path

result = await analyze_and_critique("path/to/artwork.jpg")
print(result)

About

Forge AI agents from simple Python functions. Turn your docstrings into powerful prompts and weave complex AI workflows with ease.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages