Skip to content
/ bmg Public

Bmg, Alf's successor, A Ruby Relational Algebra

License

Notifications You must be signed in to change notification settings

enspirit/bmg

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Bmg, a relational algebra

Bmg is a relational algebra implemented as a Ruby library. It implements the Relation as First-Class Citizen paradigm contributed with Alf a few years ago.

Bmg can be used to query relations in memory, from various files, SQL databases, and any data source that can be seen as serving relations. Cross data-sources joins are supported, as with Alf. For differences with Alf, see a section further down this README.

Links

Outline

Example

require 'bmg'
require 'json'

suppliers = Bmg::Relation.new([
  { sid: "S1", name: "Smith", status: 20, city: "London" },
  { sid: "S2", name: "Jones", status: 10, city: "Paris"  },
  { sid: "S3", name: "Blake", status: 30, city: "Paris"  },
  { sid: "S4", name: "Clark", status: 20, city: "London" },
  { sid: "S5", name: "Adams", status: 30, city: "Athens" }
])

by_city = suppliers
  .exclude(status: 30)
  .extend(upname: ->(t){ t[:name].upcase })
  .group([:sid, :name, :status], :suppliers_in)

puts JSON.pretty_generate(by_city)
# [{...},...]

Where are base relations coming from?

Bmg sees relations as sets/enumerable of symbolized Ruby hashes. The following sections show you how to get them in the first place, to enter Relationland.

Memory relations

If you have an Array of Hashes -- in fact any Enumerable -- you can easily get a Relation using either Bmg::Relation.new or Bmg.in_memory.

# this...
r = Bmg::Relation.new [{id: 1}, {id: 2}]

# is the same as this...
r = Bmg.in_memory [{id: 1}, {id: 2}]

# entire algebra is available on `r`

Connecting to SQL databases

Bmg currently requires sequel >= 3.0 to connect to SQL databases. You also need to require bmg/sequel.

require 'sqlite3'
require 'bmg'
require 'bmg/sequel'

Then Bmg.sequel serves relations for tables of your SQL database:

DB = Sequel.connect("sqlite://suppliers-and-parts.db")
suppliers = Bmg.sequel(:suppliers, DB)

The entire algebra is available on those relations. As long as you keep using operators that can be translated to SQL, results remain SQL-able:

big_suppliers = suppliers
  .exclude(status: 30)
  .project([:sid, :name])

puts big_suppliers.to_sql
# SELECT `t1`.`sid`, `t1`.`name` FROM `suppliers` AS 't1' WHERE (`t1`.`status` != 30)

Operators not translatable to SQL are available too (such as group below). Bmg fallbacks to memory operators for them, but remains capable of pushing some operators down the tree as illustrated below (the restriction on :city is pushed to the SQL server):

Bmg.sequel(:suppliers, sequel_db)
  .project([:sid, :name, :city])
  .group([:sid, :name], :suppliers_in)
  .restrict(city: ["Paris", "London"])
  .debug

# (group
#   (sequel SELECT `t1`.`sid`, `t1`.`name`, `t1`.`city` FROM `suppliers` AS 't1' WHERE (`t1`.`city` IN ('Paris', 'London')))
#   [:sid, :name, :status]
#   :suppliers_in
#   {:array=>false})

Reading data files (json, csv, yaml, text, xls & xlsx)

Bmg provides simple adapters to read files and reach Relationland as soon as possible.

JSON files

r = Bmg.json("path/to/a/file.json")

The json file is expected to contain tuples of same heading.

YAML files

r = Bmg.yaml("path/to/a/file.yaml")

The yaml file is expected to contain tuples of same heading.

CSV files

csv_options = { col_sep: ",", quote_char: '"' }
r = Bmg.csv("path/to/a/file.csv", csv_options)

Options are directly transmitted to ::CSV.new, check Ruby's standard library. If you don't provide them, Bmg uses headers: true (hence making then assumption that attributes names are provided on first line), and makes a best effort to infer the column separator.

Text files

There is also a straightforward way to read text files and convert lines to tuples.

r = Bmg.text_file("path/to/a/file.txt")
r.type.attrlist
# => [:line, :text]

Without options tuples will have :line and :text attributes, the former being the line number (starting at 1) and the latter being the line itself (stripped).

The are a couple of options (see Bmg::Reader::Textfile). The most useful one is the use a of a Regexp with named captures to automatically extract attributes:

r = Bmg.text_file("path/to/a/file.txt", parse: /GET (?<url>([^\s]+))/)
r.type.attrlist
# => [:line, :url]

In this scenario, non matching lines are skipped. The :line attribute keeps being used to have at least one candidate key (so to speak).

Excel files

You will need to add roo to your Gemfile to read .xls and .xlsx files with Bmg.

roo_options = { skip: 1 }
r = Bmg.excel("path/to/a/file.xls", roo_options)

Options are directly transmitted to Roo::Spreadsheet.open, check roo's documentation.

Connecting to Redis databases

Bmg currently requires bmg-redis and redis >= 4.6 to connect to Redis databases. You also need to require bmg/redis.

gem 'bmg'
gem 'bmg-redis'
require 'redis'      #  also done by 'bmg/redis' below
require 'bmg'
require 'bmg/redis'

Then, you can create Redis relation variables (aka relvars) like this:

type = Bmg::Type::ANY.with_keys([[:id]])
r = Bmg.redis(type, {
  key_prefix: "suppliers",
  redis: Redis.new,
  serializer: :marshal,
  ttl: 365 * 24 * 60 * 60
})

The key prefix will be used to distinguish the tuples from other elements in the same database (e.g. tuples from other relvars). The serializer is either :marshal or :json. Please note that types are not preserved when using the second one (all attribute values will come back as strings, but keys will be symbolized). The ttl is used to set the validity period of a tuple in redis and is optional.

The redis relvars support basic algorithms for insert/update/delete. No optimization is currently supported.

Your own relations

As noted earlier, Bmg has a simple relation interface where you only have to provide an iteration of symbolized tuples.

class MyRelation
  include Bmg::Relation

  def each
    yield(id: 1, name: "Alf", year: 2014)
    yield(id: 2, name: "Bmg", year: 2018)
  end
end

MyRelation.new
  .restrict(Predicate.gt(:year, 2015))
  .allbut([:year])

As shown, creating adapters on top of various data source is straighforward. Adapters can also participate to query optimization (such as pushing restrictions down the tree) by overriding the underscored version of operators (e.g. _restrict).

Have a look at Bmg::Algebra for the protocol and Bmg::Sql::Relation for an example. Keep in touch with the team if you need some help.

The Database abstraction

The previous section focused on obtaining relations. In practice you frequently have a collection of relations hence a database:

  • A SQL database with multiple tables
  • A list of data files, all in the same folder
  • An excel file with various sheets

Bmg supports a simple Datbabase abstraction that serves those relations "by name", in a simple way. A database can also be easily dumped back to a data folder of json or csv files, or as simple xlsx files with multiple sheets.

Connecting to a SQL Database

For a SQL database, connected with Sequel:

db = Bmg::Database.sequel(Sequel.connect('...'))
db.suppliers # yields a Bmg::Relation over the `suppliers` table

Connecting to data files in the same folder

Data files all in the same folder can be seen as a very basic form of database, and served as such. Bmg supports json, csv and yaml files:

db = Bmg::Database.data_folder('./my-database')
db.suppliers # yields a Bmg::Relation over the `suppliers.(json,csv,yml)` file

Bmg supports files in different formats in the same folder. When files with the same basename exist, json is prefered over yaml, which is prefered over csv.

Dumping a Database instance

As a data folder:

db = Bmg::Database.sequel(Sequel.connect('...'))
db.to_data_folder('path/to/folder', :json)

As an .xlsx file (any existing file will be erased, we don't support modifying existing files):

require 'bmg/xlsx'
db.to_xlsx('path/to/file.xlsx')

Supported operators

r.allbut([:a, :b, ...])                      # remove specified attributes
r.autowrap(split: '_')                       # structure a flat relation, split: '_' is the default
r.autosummarize([:a, :b, ...], x: :sum)      # (experimental) usual summarizers supported
r.constants(x: 12, ...)                      # add constant attributes (sometimes useful in unions)
r.cross_product(right)                       # cross product, alias `cross_join`
r.extend(x: ->(t){ ... }, ...)               # add computed attributes
r.extend(x: :y)                              # shortcut for r.extend(x: ->(t){ t[:y] })
r.exclude(predicate)                         # shortcut for restrict(!predicate)
r.group([:a, :b, ...], :x)                   # relation-valued attribute from attributes
r.image(right, :x, [:a, :b, ...])            # relation-valued attribute from another relation
r.images({:x => r1, :y => r2}, [:a, ...])    # shortcut over image(r1, :x, ...).image(r2, :y, ...)
r.join(right, [:a, :b, ...])                 # join on a join key
r.join(right, :a => :x, :b => :y, ...)       # join after right reversed renaming
r.left_join(right, [:a, :b, ...], {...})     # left join with optional default right tuple
r.left_join(right, {:a => :x, ...}, {...})   # left join after right reversed renaming
r.matching(right, [:a, :b, ...])             # semi join, aka where exists
r.matching(right, :a => :x, :b => :y, ...)   # semi join, after right reversed renaming
r.minus(right)                               # set difference
r.not_matching(right, [:a, :b, ...])         # inverse semi join, aka where not exists
r.not_matching(right, :a => :x, ...)         # inverse semi join, after right reversed renaming
r.page([[:a, :asc], ...], 12, page_size: 10) # paging, using an explicit ordering
r.prefix(:foo_, but: [:a, ...])              # prefix kind of renaming
r.project([:a, :b, ...])                     # keep specified attributes only
r.rename(a: :x, b: :y, ...)                  # rename some attributes
r.restrict(a: "foo", b: "bar", ...)          # relational restriction, aka where
r.rxmatch([:a, :b, ...], /xxx/)              # regex match kind of restriction
r.summarize([:a, :b, ...], x: :sum)          # relational summarization
r.suffix(:_foo, but: [:a, ...])              # suffix kind of renaming
r.transform(:to_s)                           # all-attrs transformation
r.transform(&:to_s)                          # similar, but Proc-driven
r.transform(:foo => :upcase, ...)            # specific-attrs tranformation
r.transform([:to_s, :upcase])                # chain-transformation
r.ungroup([:a, :b, ...])                     # ungroup relation-valued attributes within parent tuple
r.ungroup(:a)                                # shortcut over ungroup([:a])
r.union(right)                               # set union
r.unwrap([:a, :b, ...])                      # merge tuple-valued attributes within parent tuple
r.unwrap(:a)                                 # shortcut over unwrap([:a])
r.where(predicate)                           # alias for restrict(predicate)

Supported Predicates

Usual operators are supported and map to their SQL equivalent as expected:

Predicate.eq                                 # =
Predicate.neq                                # <>
Predicate.lt                                 # <
Predicate.lte                                # <=
Predicate.gt                                 # >
Predicate.gte                                # >=
Predicate.in                                 # SQL's IN
Predicate.is_null                            # SQL's IS NULL

See the Predicate gem for a more complete list.

Note: predicates that implement specific Ruby algorithms or patterns are not compiled to SQL (and more generally not delegated to underlying database servers).

Supported Summaries

The summarize operator receives a list of attr: summarizer pairs, e.g.

r.summarize([:city], {
  how_many: :count,        # same as how_many: Bmg::Summarizer.count
  status: :max,            # same as   status: Bmg::Summarizer.max(:status)
  min_status: Bmg::Summarizer.min(:status)
})

The following summarizers are available and translated to SQL:

Bmg::Summarizer.count                      # count the number of tuples
Bmg::Summarizer.distinct(:a)               # collect distinct values (as an array)
Bmg::Summarizer.distinct_count(:a)         # count of distinct values
Bmg::Summarizer.min(:a)                    # min value for attribute :a
Bmg::Summarizer.max(:a)                    # max value
Bmg::Summarizer.sum(:a)                    # sum :a's values
Bmg::Summarizer.avg(:a)                    # average

The following summarizers are implemented in Ruby (they are supported when querying SQL databases, but not compiled to SQL):

Bmg::Summarizer.collect(:a)                # collect :a's values (as an array)
Bmg::Summarizer.concat(:a, opts: { ... })  # concat :a's values (opts, e.g. {between: ','})
Bmg::Summarizer.first(:a, order: ...)      # smallest seen a:'s value according to a tuple ordering
Bmg::Summarizer.last(:a, order: ...)       # largest seen a:'s value according to a tuple ordering
Bmg::Summarizer.variance(:a)               # variance
Bmg::Summarizer.stddev(:a)                 # standard deviation
Bmg::Summarizer.percentile(:a, nth)        # (continuous) nth percentile
Bmg::Summarizer.percentile_disc(:a, nth)   # discrete nth percentile
Bmg::Summarizer.value_by(:a, :by => :b)    # { :b => :a } as a Hash

How is this different?

... from similar libraries?

  1. The libraries you probably know (Sequel, Arel, SQLAlchemy, Korma, jOOQ, etc.) do not implement a genuine relational algebra. Their support for chaining relational operators is thus limited (restricting your expression power and/or raising errors and/or outputting wrong or counterintuitive SQL code). Bmg always allows chaining operators. If it does not, it's a bug.

    For instance the expression below is 100% valid in Bmg. The last where clause applies to the result of the summarize (while SQL requires a HAVING clause, or a SELECT ... FROM (SELECT ...) r).

    relation
      .where(...)
      .union(...)
      .summarize(...)   # aka group by
      .where(...)
  2. Bmg supports in-memory relations, JSON relations, csv relations, SQL relations and so on. It's not tight to SQL generation, and supports queries accross multiple data sources.

  3. Bmg makes a best effort to optimize queries, simplifying both generated SQL code (low-level accesses to datasources) and in-memory operations.

  4. Bmg supports various structuring operators (group, image, autowrap, autosummarize, etc.) and allows building 'non flat' relations.

  5. Bmg can use full Ruby power when that helps (e.g. regular expressions in WHERE clauses or Ruby code in EXTEND clauses). This may prevent Bmg from delegating work to underlying data sources (e.g. SQL server) and should therefore be used with care though.

... from Alf?

If you use Alf (or used it in the past), below are the main differences between Bmg and Alf. Bmg has NOT been written to be API-compatible with Alf and will probably never be.

  1. Bmg's implementation is much simpler than Alf and uses no Ruby core extention.

  2. We are confident using Bmg in production. Systematic inspection of query plans is advised though. Alf was a bit too experimental to be used on (critical) production systems.

  3. Alf exposes a functional syntax, command-line tool, restful tools and many more. Bmg is limited to the core algebra, main Relation abstraction and SQL generation.

  4. Bmg is less strict regarding conformance to relational theory, and may actually expose non relational features (such as support for null, left_join operator, etc.). Sharp tools hurt, use them with care.

  5. Unlike Alf::Relation instances of Bmg::Relation capture query-trees, not values. Currently two instances r1 and r2 are not equal even if they define the same mathematical relation. As a consequence joining on relation-valued attributes does not work as expected in Bmg until further notice.

  6. Bmg does not implement all operators documented on try-alf.org, even if we plan to eventually support most of them.

  7. Bmg has a few additional operators that prove very useful on real production use cases: prefix, suffix, autowrap, autosummarize, left_join, rxmatch, etc.

  8. Bmg optimizes queries and compiles them to SQL on the fly, while Alf was building an AST internally first. Strictly speaking this makes Bmg less powerful than Alf since optimizations cannot be turned off for now.

Contribute

Please use github issues and pull requests for all questions, bug reports, and contributions. Don't hesitate to get in touch with us with an early code spike if you plan to add non trivial features.

Licence

This software is distributed by Enspirit SRL under a MIT Licence. Please contact Bernard Lambeau (blambeau@gmail.com) with any question.

Enspirit (https://enspirit.be) and Klaro App (https://klaro.cards) are both actively using and contributing to the library.