Skip to content

Commit

Permalink
quantum_ag
Browse files Browse the repository at this point in the history
  • Loading branch information
valbert4 committed Aug 23, 2024
1 parent 473f251 commit 89e20e3
Show file tree
Hide file tree
Showing 3 changed files with 50 additions and 16 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -10,9 +10,6 @@ logical: galois
name: 'Quantum Goppa code'
introduced: '\cite{arxiv:quant-ph/0006061,arxiv:quant-ph/0501074,doi:10.1007/s11128-006-0047-9}'

alternative_names:
- 'Quantum AG code'

description: |
A Galois-qudit CSS code constructed using two Goppa codes.
Expand All @@ -31,29 +28,20 @@ description: |
protection: 'Protects against weight \(t\) errors where \( 0 < t \leq \lfloor \frac{d^*-g-1}{2} \rfloor \) where \( d^* = \text{deg} G + 2 -2g \) and \(g\) is the genus of the function field and \(d \geq n - \lfloor \frac{deg G}{2} \rfloor\). Such codes can exceed the \hyperref[topic:quantum-gv-bound]{quantum GV bound} \cite{doi:10.1007/s11128-006-0047-9}.'

features:
rate: 'Quantum Goppa codes \cite{arxiv:quant-ph/0006061} and other quantum codes constructed from AG codes \cite{arxiv:quant-ph/0107129} can be asymptotically good. There exist three such families \cite{arxiv:2408.07764,arxiv:2408.09254,arxiv:2408.10140} that admit a diagonal transversal gate at the third level of the \term{Clifford hierarchy}.'

magic_scaling_exponent: 'By defining a generalization of triorthogonal matrices to Galois qudits of dimension \(q=2^m\), one can construct an asymptotically good family of quantum Goppa codes that admits a diagonal transversal gate at the third level of the \term{Clifford hierarchy} and attains a zero magic-state yield parameter, \(\gamma = 0\) \cite{arxiv:2408.07764}. This code can be treated as a qubit code by decomposing each Galois qudit into a Kronecker product of \(m\) qubits; see \cite{doi:10.1109/18.959288}\cite[Sec. 5.3]{arxiv:quant-ph/0501074}\cite{preset:GottesmanBook}. Two other such asymptotically good families exist \cite{arxiv:2408.09254,arxiv:2408.10140}, admitting a different diagonal gate at the third level of the \term{Clifford hierarchy}.'

rate: 'Quantum Goppa codes \cite{arxiv:quant-ph/0006061} can be asymptotically good.'

encoders:
- 'Encoding defined in Ref. \cite{arxiv:quant-ph/0107129} uses a technique from Ref. \cite{arxiv:quant-ph/0005008} to encode quantum stabilizer codes.'

transversal_gates:
- 'There exist three asymptotically good code families \cite{arxiv:2408.07764,arxiv:2408.09254,arxiv:2408.10140} that admit a diagonal transversal gate at the third level of the \term{Clifford hierarchy}.'

decoders:
- 'Farran algorithm \cite{arxiv:math/9910151}.'

relations:
parents:
- code_id: galois_css
detail: 'Goppa codes can be realized in the CSS code construction \cite{doi:10.1007/s11128-006-0047-9}.'
- code_id: quantum_ag
cousins:
- code_id: goppa
detail: 'Classical Goppa codes over various algebraic curves are used to construct quantum Goppa codes.'
- code_id: quantum_triorthogonal
detail: 'By defining a generalization of triorthogonal matrices to Galois qudits of dimension \(q=2^m\), one can construct an asymptotically good family of quantum Goppa codes that admits a diagonal transversal gate at the third level of the \term{Clifford hierarchy} and attains a zero magic-state yield parameter, \(\gamma = 0\) \cite{arxiv:2408.07764}. This code can be treated as a qubit code by decomposing each Galois qudit into a Kronecker product of \(m\) qubits; see \cite{doi:10.1109/18.959288}\cite[Sec. 5.3]{arxiv:quant-ph/0501074}\cite{preset:GottesmanBook}. Two other such asymptotically good families exist \cite{arxiv:2408.09254,arxiv:2408.10140}, admitting a different diagonal gate at the third level of the \term{Clifford hierarchy}.'


# Begin Entry Meta Information
Expand Down
46 changes: 46 additions & 0 deletions codes/quantum/qudits_galois/stabilizer/evaluation/quantum_ag.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,46 @@
#######################################################
## This is a code entry in the error correction zoo. ##
## https://github.com/errorcorrectionzoo ##
#######################################################

code_id: quantum_ag
physical: galois
logical: galois

name: 'Quantum AG code'
introduced: '\cite{arxiv:quant-ph/0107129}'

description: |
A Galois-qudit CSS code constructed using two linear AG codes.
features:
rate: 'Quantum AG codes \cite{arxiv:quant-ph/0107129} can be asymptotically good. There exist three such families \cite{arxiv:2408.07764,arxiv:2408.09254,arxiv:2408.10140} that admit a diagonal transversal gate at the third level of the \term{Clifford hierarchy}.'

magic_scaling_exponent: 'By defining a generalization of triorthogonal matrices to Galois qudits of dimension \(q=2^m\), one can construct an asymptotically good family of quantum AG codes that admits a diagonal transversal gate at the third level of the \term{Clifford hierarchy} and attains a zero magic-state yield parameter, \(\gamma = 0\) \cite{arxiv:2408.07764}. This code can be treated as a qubit code by decomposing each Galois qudit into a Kronecker product of \(m\) qubits; see \cite{doi:10.1109/18.959288}\cite[Sec. 5.3]{arxiv:quant-ph/0501074}\cite{preset:GottesmanBook}. Two other such asymptotically good families exist \cite{arxiv:2408.09254,arxiv:2408.10140}, admitting a different diagonal gate at the third level of the \term{Clifford hierarchy}.'


encoders:
- 'Encoding defined in Ref. \cite{arxiv:quant-ph/0107129} uses a technique from Ref. \cite{arxiv:quant-ph/0005008} to encode quantum stabilizer codes.'

transversal_gates:
- 'There exist three asymptotically good code families \cite{arxiv:2408.07764,arxiv:2408.09254,arxiv:2408.10140} that admit a diagonal transversal gate at the third level of the \term{Clifford hierarchy}.'

relations:
parents:
- code_id: galois_css
detail: 'Quantum AG codes can be realized in the CSS code construction \cite{doi:10.1007/s11128-006-0047-9}.'
cousins:
- code_id: ag
- code_id: quantum_triorthogonal
detail: 'By defining a generalization of triorthogonal matrices to Galois qudits of dimension \(q=2^m\), one can construct an asymptotically good family of quantum AG codes that admits a diagonal transversal gate at the third level of the \term{Clifford hierarchy} and attains a zero magic-state yield parameter, \(\gamma = 0\) \cite{arxiv:2408.07764}. This code can be treated as a qubit code by decomposing each Galois qudit into a Kronecker product of \(m\) qubits; see \cite{doi:10.1109/18.959288}\cite[Sec. 5.3]{arxiv:quant-ph/0501074}\cite{preset:GottesmanBook}. Two other such asymptotically good families exist \cite{arxiv:2408.09254,arxiv:2408.10140}, admitting a different diagonal gate at the third level of the \term{Clifford hierarchy}.'
- code_id: shimura
detail: 'The AG codes used in an asymptotically good construction of quantum AG codes with non-Clifford transversal gates \cite{arxiv:2408.09254} are those of the TVZ codes.'


# Begin Entry Meta Information
_meta:
# Change log - most recent first
changelog:
- user_id: VictorVAlbert
date: '2024-08-23'
Original file line number Diff line number Diff line change
Expand Up @@ -25,8 +25,8 @@ relations:
- code_id: generalized_reed_solomon
- code_id: quantum_mds
detail: 'Some Galois-qudit GRS codes are quantum MDS \cite{arxiv:1311.3009}.'
- code_id: galois_css
detail: 'Galois-qudit GRS codes can be constructed via the CSS construction or the Hermitian construction.'
- code_id: quantum_ag
detail: 'Galois-qudit GRS codes can be constructed via the CSS construction or the Hermitian construction from GRS codes, which are evaluation AG codes.'
- code_id: stabilizer_over_gfqsq
detail: 'Galois-qudit GRS codes can be constructed via the CSS construction or the Hermitian construction.'
- code_id: quantum_concatenated
Expand Down

0 comments on commit 89e20e3

Please sign in to comment.