Immune CEll POPulation
A method for estimating immune cell population in the expressed genes. It enable analysis of differentially expressed genes (DEGs) or raw expression data. These APIs and scripts will let you have a fine grained control on the data analysis lacking in the web version. On top of the core immune cell population deconvolution, it allows you to download the raw data from NCBI GEO gene expression database, normalize, and plot the data using command line interface.
ICEPOP is best installed via pip through one of the following commands::
$ pip install git+https://github.com/ewijaya/icepop.git
$ pip install git+https://github.com/ewijaya/icepop.git --upgrade
$ pip install git+git://github.com/ewijaya/icepop.git
$ pip install git+git://github.com/ewijaya/icepop.git --upgrade
- Web application [main][mirror]
- API documentation
The input should be either in form of CSV or TSV files. The results can be in the form of table or plot. They are determined by the suffix of the output file.
To create bar plot use this command:
$ icepop_degs input_type1_degs.tsv -fclim 2 -s mouse -o output_file.jpg
The command will produce individual plots depending on the number of samples.
To create table:
$ icepop_degs input_type1_degs.tsv -fclim 2 -s mouse -o output_file.tsv
$ icepop_degs input_type1_degs.tsv -fclim 2 -s mouse -o output_file.xlsx
Suffixes of the output should either one of these: 'svg', 'jpg', 'png', 'tsv', 'xlsx', 'xls'.
It assumes that Circos is already installed in your main path. Typical use looks like this in Bash script:
INFILE=input_type1_degs.tsv
CIRCOS_DIR=your_circos_dir
CIRCOS_CONF=//anaconda/lib/python2.7/site-packages/icepop/circos_conf/
icepop_degs_circos_uniform $INFILE \
--go \
-fclim 2 \
-circos_dir $CIRCOS_DIR
cd $CIRCOS_DIR
cp -r $CIRCOS_CONF .
circos -param random_string='image' -conf ./etc/circos-medium.conf
This script produces the circular plot that links feature genes among the samples.
E. Wijaya, Y. Igarashi, N. Nakatsu, Y. Haseda, J. Billaud, YA Chen, K. Mizuguchi, H. Yamada, K. Ishii, T. Aoshi. Quantifying the relative immune cell activation from whole tissue/organ-derived differentially expressed gene data. Sci Rep. 2017 Oct 9;7(1):12847. PMID:28993694