Skip to content

facebookexperimental/free-threading-benchmarking

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Faster CPython Benchmark Infrastructure

πŸ”’ ▢️ START A BENCHMARK RUN

Results

Here are some recent and important revisions. πŸ‘‰ Complete list of results.

Most recent pystats on main (0ac40ac)

linux x86_64 (linux)

date fork/ref hash/flags vs. 3.12.6: vs. 3.13.0rc2: vs. base:
2024-12-19 python/39e69a7cd54d44c9061d 39e69a7 1.102x ↑
πŸ“„πŸ“ˆ
1.058x ↑
πŸ“„πŸ“ˆ
2024-12-19 python/39e69a7cd54d44c9061d 39e69a7 (NOGIL) 1.143x ↓
πŸ“„πŸ“ˆ
1.172x ↓
πŸ“„πŸ“ˆ
1.216x ↓
πŸ“„πŸ“ˆπŸ§ 
2024-12-18 python/f802c8bf872ab882d305 f802c8b (NOGIL) 1.181x ↓
πŸ“„πŸ“ˆ
1.208x ↓
πŸ“„πŸ“ˆ
1.251x ↓
πŸ“„πŸ“ˆπŸ§ 
2024-12-18 python/f802c8bf872ab882d305 f802c8b 1.107x ↑
πŸ“„πŸ“ˆ
1.064x ↑
πŸ“„πŸ“ˆ
2024-12-18 python/b92f101d0f19a1df3205 b92f101 (NOGIL) 1.163x ↓
πŸ“„πŸ“ˆ
1.192x ↓
πŸ“„πŸ“ˆ
1.236x ↓
πŸ“„πŸ“ˆπŸ§ 
2024-12-18 python/b92f101d0f19a1df3205 b92f101 1.105x ↑
πŸ“„πŸ“ˆ
1.064x ↑
πŸ“„πŸ“ˆ
2024-12-16 python/cfeaa992ba9bad9be268 cfeaa99 1.118x ↑
πŸ“„πŸ“ˆ
1.072x ↑
πŸ“„πŸ“ˆ
2024-12-16 python/cfeaa992ba9bad9be268 cfeaa99 (NOGIL) 1.158x ↓
πŸ“„πŸ“ˆ
1.186x ↓
πŸ“„πŸ“ˆ
1.240x ↓
πŸ“„πŸ“ˆπŸ§ 

linux x86_64 (vultr)

date fork/ref hash/flags vs. 3.12.6: vs. 3.13.0rc2: vs. base:
2024-12-20 Yhg1s/optimise_recursive_c ddb794a (NOGIL) 1.185x ↓
πŸ“„πŸ“ˆ
1.212x ↓
πŸ“„πŸ“ˆ
1.003x ↑
πŸ“„πŸ“ˆπŸ§ 
2024-12-20 python/78ffba4221dcb2e39fd5 78ffba4 (NOGIL) 1.188x ↓
πŸ“„πŸ“ˆ
1.215x ↓
πŸ“„πŸ“ˆ
2024-12-20 mpage/gh_115999_load_attr_ b868363 1.094x ↑
πŸ“„πŸ“ˆ
1.055x ↑
πŸ“„πŸ“ˆ
1.008x ↑
πŸ“„πŸ“ˆπŸ§ 
2024-12-20 mpage/gh_115999_load_attr_ 1b787b3 (NOGIL) 1.086x ↓
πŸ“„πŸ“ˆ
1.115x ↓
πŸ“„πŸ“ˆ
1.122x ↑
πŸ“„πŸ“ˆπŸ§ 
2024-12-19 mpage/gh_115999_load_attr_ 3876bc7 (NOGIL) 1.091x ↓
πŸ“„πŸ“ˆ
1.120x ↓
πŸ“„πŸ“ˆ
1.116x ↑
πŸ“„πŸ“ˆπŸ§ 
2024-12-19 mpage/gh_115999_load_attr_ 3876bc7 1.094x ↑
πŸ“„πŸ“ˆ
1.055x ↑
πŸ“„πŸ“ˆ
1.008x ↑
πŸ“„πŸ“ˆπŸ§ 
2024-12-19 python/39e69a7cd54d44c9061d 39e69a7 1.084x ↑
πŸ“„πŸ“ˆ
1.046x ↑
πŸ“„πŸ“ˆ
2024-12-19 python/39e69a7cd54d44c9061d 39e69a7 (NOGIL) 1.189x ↓
πŸ“„πŸ“ˆ
1.215x ↓
πŸ“„πŸ“ˆ
1.246x ↓
πŸ“„πŸ“ˆπŸ§ 
2024-12-18 python/f802c8bf872ab882d305 f802c8b (NOGIL) 1.218x ↓
πŸ“„πŸ“ˆ
1.243x ↓
πŸ“„πŸ“ˆ
1.266x ↓
πŸ“„πŸ“ˆπŸ§ 
2024-12-18 python/f802c8bf872ab882d305 f802c8b 1.076x ↑
πŸ“„πŸ“ˆ
1.037x ↑
πŸ“„πŸ“ˆ
2024-12-18 nascheme/gh_115999_specialize 9015a3f 1.082x ↑
πŸ“„πŸ“ˆ
1.043x ↑
πŸ“„πŸ“ˆ
1.000x ↓
πŸ“„πŸ“ˆπŸ§ 
2024-12-18 nascheme/gh_115999_specialize 9015a3f (NOGIL) 1.192x ↓
πŸ“„πŸ“ˆ
1.218x ↓
πŸ“„πŸ“ˆ
1.023x ↑
πŸ“„πŸ“ˆπŸ§ 
2024-12-18 python/b92f101d0f19a1df3205 b92f101 (NOGIL) 1.214x ↓
πŸ“„πŸ“ˆ
1.240x ↓
πŸ“„πŸ“ˆ
1.269x ↓
πŸ“„πŸ“ˆπŸ§ 
2024-12-18 python/b92f101d0f19a1df3205 b92f101 1.085x ↑
πŸ“„πŸ“ˆ
1.046x ↑
πŸ“„πŸ“ˆ
2024-12-17 mpage/gh_115999_specialize 40f5577 (NOGIL) 1.189x ↓
πŸ“„πŸ“ˆ
1.215x ↓
πŸ“„πŸ“ˆ
1.027x ↑
πŸ“„πŸ“ˆπŸ§ 
2024-12-17 python/329165639f9ac00ba64f 3291656 (NOGIL) 1.211x ↓
πŸ“„πŸ“ˆ
1.236x ↓
πŸ“„πŸ“ˆ
1.265x ↓
πŸ“„πŸ“ˆπŸ§ 
2024-12-17 python/329165639f9ac00ba64f 3291656 1.082x ↑
πŸ“„πŸ“ˆ
1.043x ↑
πŸ“„πŸ“ˆ
2024-12-19 corona10/gh_115999_BINARY_SUB 47b80b4 (NOGIL) 1.221x ↓
πŸ“„πŸ“ˆ
1.246x ↓
πŸ“„πŸ“ˆ
1.012x ↑
πŸ“„πŸ“ˆπŸ§ 
2024-12-19 corona10/gh_115999_BINARY_SUB 47b80b4 1.062x ↑
πŸ“„πŸ“ˆ
1.024x ↑
πŸ“„πŸ“ˆ
1.003x ↓
πŸ“„πŸ“ˆπŸ§ 
2024-12-18 corona10/gh_115999_BINARY_SUB 6ef74ac 1.060x ↑
πŸ“„πŸ“ˆ
1.022x ↑
πŸ“„πŸ“ˆ
1.005x ↓
πŸ“„πŸ“ˆπŸ§ 
2024-12-18 corona10/gh_115999_BINARY_SUB 6ef74ac (NOGIL) 1.222x ↓
πŸ“„πŸ“ˆ
1.247x ↓
πŸ“„πŸ“ˆ
1.011x ↑
πŸ“„πŸ“ˆπŸ§ 
2024-12-17 nascheme/gh_115999_specialize 699f4e9 1.079x ↑
πŸ“„πŸ“ˆ
1.040x ↑
πŸ“„πŸ“ˆ
1.005x ↓
πŸ“„πŸ“ˆπŸ§ 
2024-12-17 nascheme/gh_115999_specialize 699f4e9 (NOGIL) 1.201x ↓
πŸ“„πŸ“ˆ
1.227x ↓
πŸ“„πŸ“ˆ
1.017x ↑
πŸ“„πŸ“ˆπŸ§ 
2024-12-17 corona10/gh_115999_BINARY_SUB 3aa9426 1.061x ↑
πŸ“„πŸ“ˆ
1.022x ↑
πŸ“„πŸ“ˆ
1.004x ↓
πŸ“„πŸ“ˆπŸ§ 
2024-12-17 corona10/gh_115999_BINARY_SUB 3aa9426 (NOGIL) 1.226x ↓
πŸ“„πŸ“ˆ
1.250x ↓
πŸ“„πŸ“ˆ
1.006x ↑
πŸ“„πŸ“ˆπŸ§ 
2024-12-16 python/cfeaa992ba9bad9be268 cfeaa99 1.088x ↑
πŸ“„πŸ“ˆ
1.049x ↑
πŸ“„πŸ“ˆ
2024-12-16 python/cfeaa992ba9bad9be268 cfeaa99 (NOGIL) 1.212x ↓
πŸ“„πŸ“ˆ
1.237x ↓
πŸ“„πŸ“ˆ
1.269x ↓
πŸ“„πŸ“ˆπŸ§ 
2024-12-13 nascheme/gh_115999_specialize 4c484ab 1.078x ↑
πŸ“„πŸ“ˆ
1.040x ↑
πŸ“„πŸ“ˆ
1.006x ↓
πŸ“„πŸ“ˆπŸ§ 

* indicates that the exact same versions of pyperformance was not used.

Longitudinal speed improvement

Improvement of the geometric mean of key merged benchmarks, computed with pyperf compare. The results have a resolution of 0.01 (1%).

Configuration speed improvement

Documentation

Running benchmarks from the GitHub web UI

Visit the πŸ”’ benchmark action and click the "Run Workflow" button.

The available parameters are:

  • fork: The fork of CPython to benchmark. If benchmarking a pull request, this would normally be your GitHub username.
  • ref: The branch, tag or commit SHA to benchmark. If a SHA, it must be the full SHA, since finding it by a prefix is not supported.
  • machine: The machine to run on. One of linux-amd64 (default), windows-amd64, darwin-arm64 or all.
  • benchmark_base: If checked, the base of the selected branch will also be benchmarked. The base is determined by running git merge-base upstream/main $ref.
  • pystats: If checked, collect the pystats from running the benchmarks.

To watch the progress of the benchmark, select it from the πŸ”’ benchmark action page. It may be canceled from there as well. To show only your benchmark workflows, select your GitHub ID from the "Actor" dropdown.

When the benchmarking is complete, the results are published to this repository and will appear in the complete table. Each set of benchmarks will have:

  • The raw .json results from pyperformance.
  • Comparisons against important reference releases, as well as the merge base of the branch if benchmark_base was selected. These include
    • A markdown table produced by pyperf compare_to.
    • A set of "violin" plots showing the distribution of results for each benchmark.

The most convenient way to get results locally is to clone this repo and git pull from it.

Running benchmarks from the GitHub CLI

To automate benchmarking runs, it may be more convenient to use the GitHub CLI. Once you have gh installed and configured, you can run benchmarks by cloning this repository and then from inside it:

gh workflow run benchmark.yml -f fork=me -f ref=my_branch

Any of the parameters described above are available at the commandline using the -f key=value syntax.

Collecting Linux perf profiling data

To collect Linux perf sampling profile data for a benchmarking run, run the _benchmark action and check the perf checkbox. Follow this by a run of the _generate action to regenerate the plots.

License

This repo is licensed under the BSD 3-Clause License, as found in the LICENSE file.

About

Benchmark results for free-threaded builds of Python

Resources

License

Code of conduct

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published