Skip to content

Code release for "Avatars Grow Legs Generating Smooth Human Motion from Sparse Tracking Inputs with Diffusion Model", CVPR 2023

License

Notifications You must be signed in to change notification settings

facebookresearch/AGRoL

Repository files navigation

AGRoL: Generating Smooth Human Motion from Sparse Tracking Inputs with Diffusion Model

Avatars Grow Legs: Generating Smooth Human Motion from Sparse Tracking Inputs with Diffusion Model Y. Du, R. Kips, A. Pumarola, S. Starke, A. Thabet, A. Sanakoyeu CVPR 2023

[arXiv] [Project] [BibTeX]

Enviroment Setup

All our experiments are done on a single V-100 16G GPU.

conda env create -f environment.yml
conda activate agrol

The code was tested on Python 3.9 and PyTorch 1.12.1.

Download the human_body_prior lib and body_visualizer lib and put them in this repo. The repo should look like

agrol
├── body_visualizer
├──── mesh/
├──── tools/
├──── ...
├── human_body_prior/
├──── body_model/
├──── data/
├──── ...
├── dataset/
├── prepare_data/
└── ...

Dataset Preparation

Please download the AMASS dataset from here(SMPL+H G).

python prepare_data.py --support_dir /path/to/your/smplh/dmpls --save_dir ./dataset/AMASS/ --root_dir /path/to/your/amass/dataset

The generated dataset should look like this

./dataset/AMASS/
├── BioMotionLab_NTroje
├──── train/
├──── test/
├── CMU/
├──── train/
├──── test/
└── MPI_HDM05/
├──── train/
└──── test/

Evaluation

You can either download our pre-trained models or use your pre-trained model. To download our pre-trained models:

sh prepare_data/download_model.sh

To evaluate the model:

# Diffusion model
python test.py --model_path /path/to/your/model --timestep_respacing ddim5 --support_dir /path/to/your/smpls/dmpls --dataset_path ./dataset/AMASS/

# MLP
python test.py --model_path /path/to/your/model --support_dir /path/to/your/smpls/dmpls --dataset_path ./dataset/AMASS/

Training

To train the AGRoL diffusion-model:

python train.py --save_dir /path/to/save/your/model --dataset amass --weight_decay 1e-4 --batch_size 256 --lr 3e-4 --latent_dim 512 --save_interval 1 --log_interval 1 --device 0 --input_motion_length 196 --diffusion_steps 1000 --num_workers 8 --motion_nfeat 132 --arch diffusion_DiffMLP --layers 12 --sparse_dim 54 --train_dataset_repeat_times 1000 --lr_anneal_steps 225000 --overwrite

To train the MLP model:

python train.py --save_dir /path/to/save/your/model --dataset amass --weight_decay 1e-4 --batch_size 256 --lr 3e-4 --latent_dim 512 --save_interval 1 --log_interval 1 --device 0 --input_motion_length 196 --diffusion_steps 1000 --num_workers 8 --motion_nfeat 132 --arch mlp_PureMLP --layers 12 --sparse_dim 54 --train_dataset_repeat_times 1000 --lr_anneal_steps 225000 --overwrite --no_normalization

Pretrained Weights

The pretrained weights for AGRoL can be downloaded from this link: https://github.com/facebookresearch/AGRoL/releases/tag/v0

To download the wights automatically, please run bash prepare_data/download_model.sh.

To test the pretrained AGRoL diffusion-model:

python test.py --model_path pretrained_weights/diffmlp.pt --timestep_respacing ddim5 --support_dir /path/to/your/smpls/dmpls --dataset_path ./dataset/AMASS/

To visualize the generated motions, add these commands behind:

--vis --output_dir /path/to/save/your/videos

License

CC BY-NC 4.0

The majority of AGRoL code is licensed under CC-BY-NC, however portions of the project are available under separate license terms:

  • Trimesh, AvatarPose, Guided Diffusion, and MDM are licensed under the MIT license;
  • Human Body Prior is licensed under a custom license for non-commercial scientific research purposes, available at link;
  • Body Visualizer is licensed under a custom license for non-commercial scientific research purposes, available at link.

Citing AGRoL

If you find our work inspiring or use our codebase in your research, please consider giving a star ⭐ and a citation.

@inproceedings{du2023agrol,
  author    = {Du, Yuming and Kips, Robin and Pumarola, Albert and Starke, Sebastian and Thabet, Ali and Sanakoyeu, Artsiom},
  title     = {Avatars Grow Legs: Generating Smooth Human Motion from Sparse Tracking Inputs with Diffusion Model},
  booktitle = {CVPR},
  year      = {2023},
}

Trouble Shooting

If you encounter this error during visualization:

ValueError: Cannot use face colors with a smooth mesh

You can fix it by changing the line 88 in your body_visualizer/mesh/mesh_viewer.py to:

mesh = pyrender.Mesh.from_trimesh(mesh, smooth=False)

About

Code release for "Avatars Grow Legs Generating Smooth Human Motion from Sparse Tracking Inputs with Diffusion Model", CVPR 2023

Resources

License

Code of conduct

Security policy

Stars

Watchers

Forks

Packages

No packages published