Skip to content

Commit

Permalink
Camembert model and code (#904)
Browse files Browse the repository at this point in the history
Summary:
Check locally that everything works fine.
Model is uploaded to fbaipublicfiles.

I fixed a few inconsistencies in the bpe encoding along the way, e.g. related to #1306..
Pull Request resolved: fairinternal/fairseq-py#904

Reviewed By: ngoyal2707

Differential Revision: D18418345

Pulled By: louismartin

fbshipit-source-id: 53acb4d021581968d70430ee9babee07d6573c17
  • Loading branch information
louismartin authored and facebook-github-bot committed Nov 10, 2019
1 parent a92bcda commit b31849a
Show file tree
Hide file tree
Showing 5 changed files with 89 additions and 4 deletions.
1 change: 1 addition & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@ modeling and other text generation tasks.

### What's New:

- November 2019: [CamemBERT model and code released](examples/camembert/README.md)
- November 2019: [BART model and code released](examples/bart/README.md)
- November 2019: [XLM-R models and code released](examples/xlmr/README.md)
- September 2019: [Nonautoregressive translation code released](examples/nonautoregressive_translation/README.md)
Expand Down
56 changes: 56 additions & 0 deletions examples/camembert/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,56 @@
# CamemBERT: a French BERT

## Introduction

CamemBERT is a pretrained language model trained on 138GB of French text based on RoBERTa.

## Pre-trained models

Model | #params | vocab size | Download
---|---|---|---
`CamemBERT` | 110M | 32k | [camembert.v0.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/camembert.v0.tar.gz)


## Example usage

##### Load CamemBERT from torch.hub (PyTorch >= 1.1):
```python
import torch
camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0')
camembert.eval() # disable dropout (or leave in train mode to finetune)
```

##### Load CamemBERT (for PyTorch 1.0 or custom models):
```python
# Download camembert model
wget https://dl.fbaipublicfiles.com/fairseq/models/camembert.v0.tar.gz
tar -xzvf camembert.v0.tar.gz

# Load the model in fairseq
from fairseq.models.roberta import CamembertModel
camembert = CamembertModel.from_pretrained('/path/to/camembert.v0')
camembert.eval() # disable dropout (or leave in train mode to finetune)
```

##### Filling masks:
```python
masked_line = 'Le camembert est <mask> :)'
camembert.fill_mask(masked_line, topk=3)
# [('Le camembert est délicieux :)', 0.4909118115901947, ' délicieux'),
# ('Le camembert est excellent :)', 0.10556942224502563, ' excellent'),
# ('Le camembert est succulent :)', 0.03453322499990463, ' succulent')]
```

##### Extract features from Camembert:
```python
# Extract the last layer's features
line = "J'aime le camembert!"
tokens = camembert.encode(line)
last_layer_features = camembert.extract_features(tokens)
assert last_layer_features.size() == torch.Size([1, 10, 768])

# Extract all layer's features (layer 0 is the embedding layer)
all_layers = camembert.extract_features(tokens, return_all_hiddens=True)
assert len(all_layers) == 13
assert torch.all(all_layers[-1] == last_layer_features)
```
3 changes: 2 additions & 1 deletion examples/roberta/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,8 @@ RoBERTa iterates on BERT's pretraining procedure, including training the model l

### What's New:

- November 2019: Multilingual encoder (XLM-RoBERTa) is available [XLM-R](https://github.com/pytorch/fairseq/examples/xlmr).
- November 2019: French model (CamemBERT) is available [CamemBERT](https://github.com/pytorch/fairseq/tree/master/examples/camembert).
- November 2019: Multilingual encoder (XLM-RoBERTa) is available [XLM-R](https://github.com/pytorch/fairseq/tree/master/examples/xlmr).
- September 2019: TensorFlow and TPU support via the [transformers library](https://github.com/huggingface/transformers).
- August 2019: RoBERTa is now supported in the [pytorch-transformers library](https://github.com/huggingface/pytorch-transformers).
- August 2019: Added [tutorial for finetuning on WinoGrande](https://github.com/pytorch/fairseq/tree/master/examples/roberta/wsc#roberta-training-on-winogrande-dataset).
Expand Down
10 changes: 7 additions & 3 deletions fairseq/models/roberta/hub_interface.py
Original file line number Diff line number Diff line change
Expand Up @@ -58,7 +58,7 @@ def encode(self, sentence: str, *addl_sentences, no_separator=False) -> torch.Lo
for s in addl_sentences:
bpe_sentence += (' </s>' if not no_separator else '')
bpe_sentence += ' ' + self.bpe.encode(s) + ' </s>'
tokens = self.task.source_dictionary.encode_line(bpe_sentence, append_eos=False)
tokens = self.task.source_dictionary.encode_line(bpe_sentence, append_eos=False, add_if_not_exist=False)
return tokens.long()

def decode(self, tokens: torch.LongTensor):
Expand Down Expand Up @@ -146,8 +146,9 @@ def fill_mask(self, masked_input: str, topk: int = 5):
[self.bpe.encode(text_span.rstrip()) for text_span in text_spans]
).strip()
tokens = self.task.source_dictionary.encode_line(
'<s> ' + text_spans_bpe,
append_eos=True,
'<s> ' + text_spans_bpe + ' </s>',
append_eos=False,
add_if_not_exist=False,
)

masked_index = (tokens == self.task.mask_idx).nonzero()
Expand All @@ -168,6 +169,9 @@ def fill_mask(self, masked_input: str, topk: int = 5):
topk_filled_outputs = []
for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(' ')):
predicted_token = self.bpe.decode(predicted_token_bpe)
# Quick hack to fix https://github.com/pytorch/fairseq/issues/1306
if predicted_token_bpe.startswith('\u2581'):
predicted_token = ' ' + predicted_token
if " {0}".format(masked_token) in masked_input:
topk_filled_outputs.append((
masked_input.replace(
Expand Down
23 changes: 23 additions & 0 deletions fairseq/models/roberta/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -218,6 +218,29 @@ def from_pretrained(cls, model_name_or_path, checkpoint_file='model.pt', data_na
return RobertaHubInterface(x['args'], x['task'], x['models'][0])


@register_model('camembert')
class CamembertModel(RobertaModel):
@classmethod
def hub_models(cls):
return {
'camembert.v0': 'http://dl.fbaipublicfiles.com/fairseq/models/camembert.v0.tar.gz',
}

@classmethod
def from_pretrained(cls, model_name_or_path, checkpoint_file='model.pt', data_name_or_path='.', bpe='sentencepiece', **kwargs):
from fairseq import hub_utils
x = hub_utils.from_pretrained(
model_name_or_path,
checkpoint_file,
data_name_or_path,
archive_map=cls.hub_models(),
bpe=bpe,
load_checkpoint_heads=True,
**kwargs,
)
return RobertaHubInterface(x['args'], x['task'], x['models'][0])


class RobertaLMHead(nn.Module):
"""Head for masked language modeling."""

Expand Down

0 comments on commit b31849a

Please sign in to comment.