This repository contains the MATLAB implementation of the following paper:
Hashing with Mutual Information,
Fatih Cakir*, Kun He*, Sarah Adel Bargal, and Stan Sclaroff.
TPAMI 2019 (PDF, arXiv)
If you use this code in your research, please cite:
@inproceedings{Cakir_deep_mihash,
author = {Fatih Cakir and Kun He and Sarah Adel Bargal and Stan Sclaroff},
title = {Hashing with Mutual Information},
booktitle = {IEEE Transactions on Pattern Analysis and Machine Intelligence},
year = {2019},
}
Hashing with Binary Matrix Pursuit,
Fatih Cakir, Kun He, and Stan Sclaroff.
ECCV 2018 (conference page, arXiv)
If you use this code in your research, please cite:
@InProceedings{Cakir_2018_ECCV,
author = {Cakir, Fatih and He, Kun and Sclaroff, Stan},
title = {Hashing with Binary Matrix Pursuit},
booktitle = {The European Conference on Computer Vision (ECCV)},
year = {2018}
}
- Install or symlink MatConvNet at
./matconvnet
(for training CNNs) - Install or symlink VLFeat at
./vlfeat
- Download necessary datasets to
./cachedir/data/
Note: Large file ~35GB - Download necessary model files to
./cachedir/models/
- Create
./cachedir/results/
folder to hold experimental data - In the root folder, run
startup.m
- The main functions for experimenting are
demo_imagenet.m
(for the ImageNet100 benchmark) anddemo_AP.m
(for other benchmarks such as CIFAR-10 and NUSWIDE). - The main arguments can be found in
get_opts.m
. - Below are examples commands to replicate some of the results in the paper. Please refer to Section 5 of the paper and
get_opts.m
for experimental setting and parameter details. A MATLAB diary will be saved to the corresponding experimental folder.- CIFAR-1 32 bits:
demo_AP('cifar',32,'vggf','split',1,'nbins',32,'sigmf', [1 0],'lr', 1e-3,'lrstep',50,'epoch',100,'obj','mi','testInterval',10, 'batchSize', 256, 'metrics', 'AP')
- Diary. Achieves 0.78-0.79 mAP at 100 epochs.
- CIFAR-2 32 bits:
demo_AP('cifar',32,'vggf','split',2,'nbins',12,'sigmf', [30 0],'lr', 2e-3,'lrstep',50,'epoch',100,'obj','mi','testInterval',10, 'batchSize', 256, 'metrics', 'AP')
- Diary. Achieves 0.93-0.94 mAP at 100 epochs.
- NUSWIDE-1 32 bits :
demo_AP('nus',32,'vggf_ft','split',1, 'nbins',16,'sigmf', [1 0],'lr', 0.05,'lrstep',50, 'epoch',120,'obj','mi','testInterval',10, 'batchSize', 250, 'metrics', {'AP','AP@5000', 'AP@50000'})
- Diary. Achieves 0.82-0.83 mAP@5K at 120 epochs.
- NUSWIDE-2 32 bits :
demo_AP('nus',32,'vggf_ft','split',2, 'nbins',16,'sigmf', [1 0],'lr', 0.01,'lrstep',50, 'epoch',100,'obj','mi','testInterval',5, 'batchSize', 250, 'metrics', {'AP','AP@5000', 'AP@50000'})
- Diary. Achieves 0.81-0.82 mAP@50K at 100 epochs.
- ImageNet100 48 bits:
demo_imagenet(48, 'alexnet_ft', 'split', 1 , 'nbins', 16, 'lr', 0.1, 'lrdecay', 0.05, 'lrmult', 0.01, 'lrstep', 100, 'nbins', 16, 'sigmf', [10 0], 'testInterval', 25, 'metrics', {'AP', 'AP@1000'}, 'epoch', 125)
- Diary. Achieves 0.68-0.69 mAP@1K at 125 epochs.
- CIFAR-1 32 bits:
MIT License, see LICENSE
For questions and comments, feel free to contact: fcakirs@gmail.com