-
Notifications
You must be signed in to change notification settings - Fork 1k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Azure blob storage support in Java feature server #2319
Comments
This issue has been automatically marked as stale because it has not had recent activity. It will be closed if no further activity occurs. Thank you for your contributions. |
Hi, Thanks for creating this issue, our application is very latency critical and python server is not able to meet the requirement. Can I know if there is any update for this. We are using feast 0.19.4 |
Hi! I would recommend moving forward solving this through using the Go feature server (https://github.com/feast-dev/feast/blob/projectMetadata/go/internal/feast/registry/registry.go#L319) We're just finishing stabilization of this and it should also be easier to configure CC @samuel100 . This'll be made easier once we migrate the Azure connector into the main repo |
This issue has been automatically marked as stale because it has not had recent activity. It will be closed if no further activity occurs. Thank you for your contributions. |
- Add azure blob storage support in java feature server - Fix S3 integration test to work without a real AWS account - Add GCS mock to integration tests to be able to run them without a real google cloud account - Adding dependency management in maven for libraries with older incompatible versions as transitive dependencies
- Add azure blob storage support in java feature server - Fix S3 integration test to work without a real AWS account - Add GCS mock to integration tests to be able to run them without a real google cloud account - Adding dependency management in maven for libraries with older incompatible versions as transitive dependencies
- Add azure blob storage support in java feature server - Fix S3 integration test to work without a real AWS account - Add GCS mock to integration tests to be able to run them without a real google cloud account - Adding dependency management in maven for libraries with older incompatible versions as transitive dependencies Signed-off-by: Ferenc Szabó <szaboferee@gmail.com>
- Add azure blob storage support in java feature server - Fix S3 integration test to work without a real AWS account - Add GCS mock to integration tests to be able to run them without a real google cloud account - Adding dependency management in maven for libraries with older incompatible versions as transitive dependencies Signed-off-by: Ferenc Szabó <szaboferee@gmail.com>
# [0.36.0](v0.35.0...v0.36.0) (2024-04-16) ### Bug Fixes * Add __eq__, __hash__ to SparkSource for correct comparison ([#4028](#4028)) ([e703b40](e703b40)) * Add conn.commit() to Postgresonline_write_batch.online_write_batch ([#3904](#3904)) ([7d75fc5](7d75fc5)) * Add missing __init__.py to embedded_go ([#4051](#4051)) ([6bb4c73](6bb4c73)) * Add missing init files in infra utils ([#4067](#4067)) ([54910a1](54910a1)) * Added registryPath parameter documentation in WebUI reference ([#3983](#3983)) ([5e0af8f](5e0af8f)), closes [#3974](#3974) [#3974](#3974) * Adding missing init files in materialization modules ([#4052](#4052)) ([df05253](df05253)) * Allow trancated timestamps when converting ([#3861](#3861)) ([bdd7dfb](bdd7dfb)) * Azure blob storage support in Java feature server ([#2319](#2319)) ([#4014](#4014)) ([b9aabbd](b9aabbd)) * Bugfix for grabbing historical data from Snowflake with array type features. ([#3964](#3964)) ([1cc94f2](1cc94f2)) * Bytewax materialization engine fails when loading feature_store.yaml ([#3912](#3912)) ([987f0fd](987f0fd)) * CI unittest warnings ([#4006](#4006)) ([0441b8b](0441b8b)) * Correct the returning class proto type of StreamFeatureView to StreamFeatureViewProto instead of FeatureViewProto. ([#3843](#3843)) ([86d6221](86d6221)) * Create index only if not exists during MySQL online store update ([#3905](#3905)) ([2f99a61](2f99a61)) * Disable minio tests in workflows on master and nightly ([#4072](#4072)) ([c06dda8](c06dda8)) * Disable the Feast Usage feature by default. ([#4090](#4090)) ([b5a7013](b5a7013)) * Dump repo_config by alias ([#4063](#4063)) ([e4bef67](e4bef67)) * Extend SQL registry config with a sqlalchemy_config_kwargs key ([#3997](#3997)) ([21931d5](21931d5)) * Feature Server image startup in OpenShift clusters ([#4096](#4096)) ([9efb243](9efb243)) * Fix copy method for StreamFeatureView ([#3951](#3951)) ([cf06704](cf06704)) * Fix for materializing entityless feature views in Snowflake ([#3961](#3961)) ([1e64c77](1e64c77)) * Fix type mapping spark ([#4071](#4071)) ([3afa78e](3afa78e)) * Fix typo as the cli does not support shortcut-f option. ([#3954](#3954)) ([dd79dbb](dd79dbb)) * Get container host addresses from testcontainers ([#3946](#3946)) ([2cf1a0f](2cf1a0f)) * Handle ComplexFeastType to None comparison ([#3876](#3876)) ([fa8492d](fa8492d)) * Hashlib md5 errors in FIPS for python 3.9+ ([#4019](#4019)) ([6d9156b](6d9156b)) * Making the query_timeout variable as optional int because upstream is considered to be optional ([#4092](#4092)) ([fd5b620](fd5b620)) * Move gRPC dependencies to an extra ([#3900](#3900)) ([f93c5fd](f93c5fd)) * Prevent spamming pull busybox from dockerhub ([#3923](#3923)) ([7153cad](7153cad)) * Quickstart notebook example ([#3976](#3976)) ([b023aa5](b023aa5)) * Raise error when not able read of file source spark source ([#4005](#4005)) ([34cabfb](34cabfb)) * remove not use input parameter in spark source ([#3980](#3980)) ([7c90882](7c90882)) * Remove parentheses in pull_latest_from_table_or_query ([#4026](#4026)) ([dc4671e](dc4671e)) * Remove proto-plus imports ([#4044](#4044)) ([ad8f572](ad8f572)) * Remove unnecessary dependency on mysqlclient ([#3925](#3925)) ([f494f02](f494f02)) * Restore label check for all actions using pull_request_target ([#3978](#3978)) ([591ba4e](591ba4e)) * Revert mypy config ([#3952](#3952)) ([6b8e96c](6b8e96c)) * Rewrite Spark materialization engine to use mapInPandas ([#3936](#3936)) ([dbb59ba](dbb59ba)) * Run feature server w/o gunicorn on windows ([#4024](#4024)) ([584e9b1](584e9b1)) * SqlRegistry _apply_object update statement ([#4042](#4042)) ([ef62def](ef62def)) * Substrait ODFVs for online ([#4064](#4064)) ([26391b0](26391b0)) * Swap security label check on the PR title validation job to explicit permissions instead ([#3987](#3987)) ([f604af9](f604af9)) * Transformation server doesn't generate files from proto ([#3902](#3902)) ([d3a2a45](d3a2a45)) * Trino as an OfflineStore Access Denied when BasicAuthenticaion ([#3898](#3898)) ([49d2988](49d2988)) * Trying to import pyspark lazily to avoid the dependency on the library ([#4091](#4091)) ([a05cdbc](a05cdbc)) * Typo Correction in Feast UI Readme ([#3939](#3939)) ([c16e5af](c16e5af)) * Update actions/setup-python from v3 to v4 ([#4003](#4003)) ([ee4c4f1](ee4c4f1)) * Update typeguard version to >=4.0.0 ([#3837](#3837)) ([dd96150](dd96150)) * Upgrade sqlalchemy from 1.x to 2.x regarding PVE-2022-51668. ([#4065](#4065)) ([ec4c15c](ec4c15c)) * Use CopyFrom() instead of __deepycopy__() for creating a copy of protobuf object. ([#3999](#3999)) ([5561b30](5561b30)) * Using version args to install the correct feast version ([#3953](#3953)) ([b83a702](b83a702)) * Verify the existence of Registry tables in snowflake before calling CREATE sql command. Allow read-only user to call feast apply. ([#3851](#3851)) ([9a3590e](9a3590e)) ### Features * Add duckdb offline store ([#3981](#3981)) ([161547b](161547b)) * Add Entity df in format of a Spark Dataframe instead of just pd.DataFrame or string for SparkOfflineStore ([#3988](#3988)) ([43b2c28](43b2c28)) * Add gRPC Registry Server ([#3924](#3924)) ([373e624](373e624)) * Add local tests for s3 registry using minio ([#4029](#4029)) ([d82d1ec](d82d1ec)) * Add python bytes to array type conversion support proto ([#3874](#3874)) ([8688acd](8688acd)) * Add python client for remote registry server ([#3941](#3941)) ([42a7b81](42a7b81)) * Add Substrait-based ODFV transformation ([#3969](#3969)) ([9e58bd4](9e58bd4)) * Add support for arrays in snowflake ([#3769](#3769)) ([8d6bec8](8d6bec8)) * Added delete_table to redis online store ([#3857](#3857)) ([03dae13](03dae13)) * Adding support for Native Python feature transformations for ODFVs ([#4045](#4045)) ([73bc853](73bc853)) * Bumping requirements ([#4079](#4079)) ([1943056](1943056)) * Decouple transformation types from ODFVs ([#3949](#3949)) ([0a9fae8](0a9fae8)) * Dropping Python 3.8 from local integration tests and integration tests ([#3994](#3994)) ([817995c](817995c)) * Dropping python 3.8 requirements files from the project. ([#4021](#4021)) ([f09c612](f09c612)) * Dropping the support for python 3.8 version from feast ([#4010](#4010)) ([a0f7472](a0f7472)) * Dropping unit tests for Python 3.8 ([#3989](#3989)) ([60f24f9](60f24f9)) * Enable Arrow-based columnar data transfers ([#3996](#3996)) ([d8d7567](d8d7567)) * Enable Vector database and retrieve_online_documents API ([#4061](#4061)) ([ec19036](ec19036)) * Kubernetes materialization engine written based on bytewax ([#4087](#4087)) ([7617bdb](7617bdb)) * Lint with ruff ([#4043](#4043)) ([7f1557b](7f1557b)) * Make arrow primary interchange for offline ODFV execution ([#4083](#4083)) ([9ed0a09](9ed0a09)) * Pandas v2 compatibility ([#3957](#3957)) ([64459ad](64459ad)) * Pull duckdb from contribs, add to CI ([#4059](#4059)) ([318a2b8](318a2b8)) * Refactor ODFV schema inference ([#4076](#4076)) ([c50a9ff](c50a9ff)) * Refactor registry caching logic into a separate class ([#3943](#3943)) ([924f944](924f944)) * Rename OnDemandTransformations to Transformations ([#4038](#4038)) ([9b98eaf](9b98eaf)) * Revert updating dependencies so that feast can be run on 3.11. ([#3968](#3968)) ([d3c68fb](d3c68fb)), closes [#3958](#3958) * Rewrite ibis point-in-time-join w/o feast abstractions ([#4023](#4023)) ([3980e0c](3980e0c)) * Support s3gov schema by snowflake offline store during materialization ([#3891](#3891)) ([ea8ad17](ea8ad17)) * Update odfv test ([#4054](#4054)) ([afd52b8](afd52b8)) * Update pyproject.toml to use Python 3.9 as default ([#4011](#4011)) ([277b891](277b891)) * Update the Pydantic from v1 to v2 ([#3948](#3948)) ([ec11a7c](ec11a7c)) * Updating dependencies so that feast can be run on 3.11. ([#3958](#3958)) ([59639db](59639db)) * Updating protos to separate transformation ([#4018](#4018)) ([c58ef74](c58ef74)) ### Reverts * Reverting bumping requirements ([#4081](#4081)) ([1ba65b4](1ba65b4)), closes [#4079](#4079) * Verify the existence of Registry tables in snowflake… ([#3907](#3907)) ([c0d358a](c0d358a)), closes [#3851](#3851)
Expected Behavior
Feast Java feature servers should be able to read from a registry in Azure blob storage.
Current Behavior
Azure users can use the python feature server through https://github.com/Azure/feast-azure/tree/main/cluster/sdk or use an old Spark centric approach for feature serving. We should enable Java serving support as well
Possible Solution
https://github.com/feast-dev/feast/blob/master/java/serving/src/main/java/feast/serving/config/RegistryConfig.java#L48 has AWS/GCP equivalents. We should implement the interface for Azure.
The text was updated successfully, but these errors were encountered: