Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix: Fix on demand feature view crash from inference when it uses df.apply #2713

Merged
merged 3 commits into from
May 17, 2022
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 15 additions & 3 deletions sdk/python/feast/on_demand_feature_view.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,9 @@
import copy
import functools
import warnings
from datetime import datetime
from types import MethodType
from typing import Dict, List, Optional, Type, Union
from typing import Any, Dict, List, Optional, Type, Union

import dill
import pandas as pd
Expand Down Expand Up @@ -442,18 +443,29 @@ def infer_features(self):
Raises:
RegistryInferenceFailure: The set of features could not be inferred.
"""
rand_df_value: Dict[str, Any] = {
"float": 1.0,
"int": 1,
"str": "hello world",
"bytes": str.encode("hello world"),
"bool": True,
"datetime64[ns]": datetime.utcnow(),
}

df = pd.DataFrame()
for feature_view_projection in self.source_feature_view_projections.values():
for feature in feature_view_projection.features:
dtype = feast_value_type_to_pandas_type(feature.dtype.to_value_type())
df[f"{feature_view_projection.name}__{feature.name}"] = pd.Series(
dtype=dtype
)
df[f"{feature.name}"] = pd.Series(dtype=dtype)
df[f"{feature.name}"] = pd.Series(
data=rand_df_value[dtype], dtype=dtype
)
for request_data in self.source_request_sources.values():
for field in request_data.schema:
dtype = feast_value_type_to_pandas_type(field.dtype.to_value_type())
df[f"{field.name}"] = pd.Series(dtype=dtype)
df[f"{field.name}"] = pd.Series(rand_df_value[dtype], dtype=dtype)
output_df: pd.DataFrame = self.udf.__call__(df)
inferred_features = []
for f, dt in zip(output_df.columns, output_df.dtypes):
Expand Down
48 changes: 48 additions & 0 deletions sdk/python/tests/example_repos/on_demand_feature_view_repo.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,48 @@
from datetime import timedelta

import pandas as pd

from feast import FeatureView, Field, FileSource
from feast.on_demand_feature_view import on_demand_feature_view
from feast.types import Float32, String

driver_stats = FileSource(
name="driver_stats_source",
path="data/driver_stats_lat_lon.parquet",
timestamp_field="event_timestamp",
created_timestamp_column="created",
description="A table describing the stats of a driver based on hourly logs",
owner="test2@gmail.com",
)

driver_daily_features_view = FeatureView(
name="driver_daily_features",
entities=["driver"],
ttl=timedelta(seconds=8640000000),
schema=[
Field(name="daily_miles_driven", dtype=Float32),
Field(name="lat", dtype=Float32),
Field(name="lon", dtype=Float32),
Field(name="string_feature", dtype=String),
],
online=True,
source=driver_stats,
tags={"production": "True"},
owner="test2@gmail.com",
)


@on_demand_feature_view(
sources=[driver_daily_features_view],
schema=[
Field(name="first_char", dtype=String),
Field(name="concat_string", dtype=String),
],
)
def location_features_from_push(inputs: pd.DataFrame) -> pd.DataFrame:
df = pd.DataFrame()
df["concat_string"] = inputs.apply(
lambda x: x.string_feature + "hello", axis=1
).astype("string")
df["first_char"] = inputs["string_feature"].str[:1].astype("string")
return df
31 changes: 31 additions & 0 deletions sdk/python/tests/integration/registration/test_cli.py
Original file line number Diff line number Diff line change
Expand Up @@ -201,6 +201,37 @@ def test_nullable_online_store(test_nullable_online_store) -> None:
runner.run(["teardown"], cwd=repo_path)


@pytest.mark.integration
@pytest.mark.universal_offline_stores
def test_odfv_apply(environment) -> None:
project = f"test_odfv_apply{str(uuid.uuid4()).replace('-', '')[:8]}"
runner = CliRunner()

with tempfile.TemporaryDirectory() as repo_dir_name:
try:
repo_path = Path(repo_dir_name)
feature_store_yaml = make_feature_store_yaml(
project, environment.test_repo_config, repo_path
)

repo_config = repo_path / "feature_store.yaml"

repo_config.write_text(dedent(feature_store_yaml))

repo_example = repo_path / "example.py"
repo_example.write_text(get_example_repo("on_demand_feature_view_repo.py"))
result = runner.run(["apply"], cwd=repo_path)
assertpy.assert_that(result.returncode).is_equal_to(0)

# entity & feature view list commands should succeed
result = runner.run(["entities", "list"], cwd=repo_path)
assertpy.assert_that(result.returncode).is_equal_to(0)
result = runner.run(["on-demand-feature-views", "list"], cwd=repo_path)
assertpy.assert_that(result.returncode).is_equal_to(0)
finally:
runner.run(["teardown"], cwd=repo_path)


@contextmanager
def setup_third_party_provider_repo(provider_name: str):
with tempfile.TemporaryDirectory() as repo_dir_name:
Expand Down
74 changes: 74 additions & 0 deletions sdk/python/tests/integration/registration/test_registry.py
Original file line number Diff line number Diff line change
Expand Up @@ -234,6 +234,80 @@ def test_apply_feature_view_success(test_registry):
test_registry._get_registry_proto()


@pytest.mark.parametrize(
"test_registry", [lazy_fixture("local_registry")],
)
def test_apply_on_demand_feature_view_success(test_registry):
# Create Feature Views
driver_stats = FileSource(
name="driver_stats_source",
path="data/driver_stats_lat_lon.parquet",
timestamp_field="event_timestamp",
created_timestamp_column="created",
description="A table describing the stats of a driver based on hourly logs",
owner="test2@gmail.com",
)

driver_daily_features_view = FeatureView(
name="driver_daily_features",
entities=["driver"],
ttl=timedelta(seconds=8640000000),
schema=[
Field(name="daily_miles_driven", dtype=Float32),
Field(name="lat", dtype=Float32),
Field(name="lon", dtype=Float32),
Field(name="string_feature", dtype=String),
],
online=True,
source=driver_stats,
tags={"production": "True"},
owner="test2@gmail.com",
)

@on_demand_feature_view(
sources=[driver_daily_features_view],
schema=[Field(name="first_char", dtype=String)],
)
def location_features_from_push(inputs: pd.DataFrame) -> pd.DataFrame:
df = pd.DataFrame()
df["first_char"] = inputs["string_feature"].str[:1].astype("string")
return df

project = "project"

# Register Feature View
test_registry.apply_feature_view(location_features_from_push, project)

feature_views = test_registry.list_on_demand_feature_views(project)

# List Feature Views
assert (
len(feature_views) == 1
and feature_views[0].name == "location_features_from_push"
and feature_views[0].features[0].name == "first_char"
and feature_views[0].features[0].dtype == String
)

feature_view = test_registry.get_on_demand_feature_view(
"location_features_from_push", project
)
assert (
feature_view.name == "location_features_from_push"
and feature_view.features[0].name == "first_char"
and feature_view.features[0].dtype == String
)

test_registry.delete_feature_view("location_features_from_push", project)
feature_views = test_registry.list_on_demand_feature_views(project)
assert len(feature_views) == 0

test_registry.teardown()

# Will try to reload registry, which will fail because the file has been deleted
with pytest.raises(FileNotFoundError):
test_registry._get_registry_proto()


@pytest.mark.parametrize(
"test_registry", [lazy_fixture("local_registry")],
)
Expand Down