Skip to content

Code for "Pérez-García et al. 2021, Transfer Learning of Deep Spatiotemporal Networks to Model Arbitrarily Long Videos of Seizures, MICCAI 2021".

Notifications You must be signed in to change notification settings

fepegar/gestures-miccai-2021

Repository files navigation

GESTURES – MICCAI 2021

This repository contains the training scripts used in Pérez-García et al., 2021, Transfer Learning of Deep Spatiotemporal Networks to Model Arbitrarily Long Videos of Seizures, 24th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI).

The (features) dataset is publicly available at the UCL Research Data Repository.

GESTURES diagram

GESTURES stands for generalized epileptic seizure classification from video-telemetry using recurrent convolutional neural networks.

Citation

If you use this code or the dataset for your research, please cite the paper and the dataset appropriately.

Installation

Using conda is recommended:

conda create -n miccai-gestures python=3.7 ipython -y && conda activate miccai-gestures

Using light-the-torch is recommended to install the best version of PyTorch automatically:

pip install light-the-torch
ltt install torch==1.7.0 torchvision==0.4.2

Then, clone this repository and install the rest of the requirements:

git clone https://github.com/fepegar/gestures-miccai-2021.git
cd gestures-miccai-2021
pip install -r requirements.txt

Finally, download the dataset:

curl -L -o dataset.zip https://ndownloader.figshare.com/files/28668096
unzip dataset.zip -d dataset

Training

GAMMA=4  # gamma parameter for Beta distribution
AGG=blstm  # aggregation mode. Can be "mean", "lstm" or "blstm"
N=16  # number of segments
K=0  # fold for k-fold cross-validation
python train_features_lstm.py \
  --print-config \
  with \
  experiment_name=lstm_feats_jitter_${GAMMA}_agg_${AGG}_segs_${N} \
  jitter_mode=${GAMMA} \
  aggregation=${AGG} \
  num_segments=${N} \
  fold=${K}

About

Code for "Pérez-García et al. 2021, Transfer Learning of Deep Spatiotemporal Networks to Model Arbitrarily Long Videos of Seizures, MICCAI 2021".

Topics

Resources

Stars

Watchers

Forks

Languages