Skip to content

fierytree/LFR-GAN

Repository files navigation

Introduction

This is the source code of our TOMM 2023 paper "LFR-GAN: Local Feature Refinement based Generative Adversarial Network for Text-to-Image Generation". Please cite the following paper if you use our code.

Zijun Deng, Xiangteng He and Yuxin Peng*, Zijun Deng, Xiangteng He and Yuxin Peng*, "LFR-GAN: Local Feature Refinement based Generative Adversarial Network for Text-to-Image Generation", ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 2023.

Dependencies

  • Python 3.7

  • CUDA 1.11.0

  • PyTorch 1.7.1

  • gcc 7.5.0

Run the following commands to install the same dependencies as our experiments.

conda install -c pytorch pytorch=1.7.1 torchvision cudatoolkit=11.0
pip install git+https://github.com/openai/CLIP.git
pip install -r requirements.txt

Data Preparation

Download the image data, pretrained models, and parser tool that we used from the link (password: 2fsx) and unzip them to corresponding folders.

Generate Image

  1. For bird images: python code/main.py --cfg=code/cfg/eval_bird.yml --lafite=pretrained_models/birds.pkl

  2. For flower images: python code/main.py --cfg=code/cfg/eval_flower.yml --lafite=pretrained_models/flower.pkl

Train Model

You can also train the models by yourself.

# pretrained_models/bird_netG_epoch_700.pth
python code/main_DMGAN.py --cfg code/cfg/bird_DMGAN.yml --gpu 0
# pretrained_models/flower_netG_epoch_325.pth
python code/main_DMGAN.py --cfg code/cfg/flower_DMGAN.yml --gpu 0

For the training of Lafite models, please refer to https://github.com/drboog/Lafite.

Evaluate

For the evaluation, please refer to Lafite.

For any questions, feel free to contact us (dengzijun57@gmail.com).

Welcome to our Laboratory Homepage for more information about our papers, source codes, and datasets.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published