Skip to content

flaresimulations/flares

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

First Light And Reionisation Epoch Simulations (FLARES)

A python convenience module for working with FLARES data.

Requirements

Installation

Run the following to add this module permanently to your path:

export PYTHONPATH=$PYTHONPATH:/path/to/this/directory/flares

You can then just run

import flares

in any other scripts to get the flares class and associated functionality.

Set up and data location

The original FLARES data on COSMA are located here:

/cosma7/data/dp004/FLARES/FLARES-1

You may need to update this location in flares.py#L29 by changing the self.directory string.

Tutorial

flares.py contains the flares class, which contains a lot of useful functionality for analysing the resims, such as the specified halos (flares.halos) and snapshots (flares.tags) you wish to analyse; these should be updated as new resims are completed.

In order to make working with the data easier we typically download a subset of subhalo and particle arrays to a 'master' HDF5 file. This can then be used in place of the raw simulation outputs. It also typically includes other derived properties, such as stellar masses and SFRs within apertures, and forward modelled predictions for emission. Most user will typically use a master file that has already been created (please speak to one of the team to get access), however for reference below we specify how to create a master file from scratch. Each bash submission script may require modifying for your particular architecture and python environment.

  • First we download the particle properties, handled in run_download_particles.cosma.sh
  • We can then download subhalo properties, handled in run_download_properties.cosma.sh. The required arrays can be defined in req_arrays.txt
  • If you wish to calculate emission from subhalos, you first need to calculate the line of sigh metal column density, handled in run_calc_Zlos.cosma.sh
  • You can then run run_photometry.cosma.sh to generate predicted emission. Within this script you can select whether you require fluxes, luminosities, full SEDs or just line information.
  • Photometric indices like the Balmer break, UV-continuum slope, etc are calculated on running run_photometry_indices.cosma.sh
  • Finally, the outputs from each region can be combined using combine_master_file.py

Once this has completed you will have a single file data/flares.hdf5 with the following (rough) data structure: Resim_num/Property_type/Property, where Resim_num is the number of resims (see here), Property_type can be either Galaxy (like stellar mass, sfr, etc) or Particle (individual properties of gas/stellar particles) and Property is the required property.

Example

Once the data is downloaded, you can use it as so,

import flares
fl = flares.flares('./data/flares.hdf5', sim_type='FLARES')

mstar = fl.load_dataset('Mstar_aperture/30', arr_type='Galaxy')

halo = fl.halos[0]
tag = fl.tags[0]

print (mstar[halo][tag][:10])

Creating distribution functions, e.g: stellar mass function for z=5:

import numpy as np
import pandas as pd
import matplotlib
matplotlib.rcParams['text.usetex'] = True
import matplotlib.pyplot as plt
import flares

fl = flares.flares('./data/flares.hdf5', sim_type='FLARES')
halo = fl.halos
tag = fl.tags[-1]
volume = (4/3)*np.pi*(fl.radius**3)

mstar = fl.load_dataset('Mstar_aperture/30', arr_type='Galaxy')*1e10  #Stellar mass within a 30pkpc aperture
df = pd.read_csv('weight_files/weights_grid.txt')
weights = np.array(df['weights'])

bins = np.arange(8, 11.5, 0.2)
bincen = (bins[1:]+bins[:-1])/2.
binwidth = bins[1:] - bins[:-1]

hist = np.zeros(len(bins)-1)
err = np.zeros(len(bins)-1)

for ii in range(len(weights)):
    tmp, bin_edges = np.histogram(np.log10(mstar[halo[ii]][tag]), bins = bins)
    hist+=tmp*weights[ii]
    err+=np.square(np.sqrt(tmp)*weights[ii])

smf = hist/(volume*binwidth)
smf_err = np.sqrt(err)/(volume*binwidth)

fig, axs = plt.subplots(nrows=1, ncols=1, figsize=(5, 5), facecolor='w', edgecolor='k')

y_lo, y_up = np.log10(smf)-np.log10(smf-smf_err), np.log10(smf+smf_err)-np.log10(smf)
axs.errorbar(bincen, np.log10(smf), yerr=[y_lo, y_up], ls='', marker='o', label=rF"Flares $z={float(tag[5:].replace('p','.'))}$")

axs.set_ylabel(r'$\mathrm{log}_{10}(\Phi/(\mathrm{cMpc}^{-3}\mathrm{dex}^{-1}))$', fontsize=14)
axs.set_xlabel(r'$\mathrm{log}_{10}(\mathrm{M}_{\star}/\mathrm{M_{\odot}})$', fontsize=14)
axs.set_xlim((8, 11.4))
axs.set_ylim((-8.2, -0.8))
axs.set_xticks(np.arange(8., 11.5, 1))
axs.grid(True, alpha = 0.5)
axs.legend(frameon=False, fontsize = 14, numpoints=1, ncol = 2)
axs.minorticks_on()
axs.tick_params(axis='x', which='minor', direction='in')
axs.tick_params(axis='y', which='minor', direction='in')
for label in (axs.get_xticklabels() + axs.get_yticklabels()):
    label.set_fontsize(13)

plt.show()

Extracting stellar particle information,

import numpy as np
import h5py
fname = './data/flares.hdf5'
num = '00'
with h5py.File(fname, 'r') as hf:
    S_len = np.array(hf[num+'/'+tag+'/Galaxy'].get('S_Length'), dtype = np.int64)
    S_mass = np.array(hf[num+'/'+tag+'/Particle'].get('S_Mass'), dtype = np.float64)*1e10
    S_Z = np.array(hf[num+'/'+tag+'/Particle'].get('S_Z'), dtype = np.float64)
    S_age = np.array(hf[num+'/'+tag+'/Particle'].get('S_Age'), dtype = np.float64)*1e3
    S_ap30 = np.array(hf[num+'/'+tag+'/Particle/Apertures/Star'].get('30'), dtype = bool) #Boolean array of particles within 30 pkpc

begin = np.zeros(len(S_len), dtype = np.int64)
end = np.zeros(len(S_len), dtype = np.int64)
begin[1:] = np.cumsum(S_len)[:-1]
end = np.cumsum(S_len)

#Age in Myr of all particles belonging to first galaxy in resim region 'num'

print (S_age[begin[0]:end[0]])

#Age in Myr of all particles belonging to first galaxy in resim region 'num' within 30 pkpc
print (S_age[begin[0]:end[0]][S_ap30[begin[0]:end[0]]])

About

First Light And Reionisation Epoch Simulations (FLARES)

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 95.3%
  • Shell 4.7%