Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Partial progress on task 63 #151

Open
wants to merge 3 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
24 changes: 17 additions & 7 deletions Carleson/HardyLittlewood.lean
Original file line number Diff line number Diff line change
Expand Up @@ -31,9 +31,9 @@ variable {X E : Type*} {A : ℝ≥0} [MetricSpace X] [MeasurableSpace X]
/-- The Hardy-Littlewood maximal function w.r.t. a collection of balls 𝓑.
M_{𝓑, p} in the blueprint. -/
def maximalFunction (μ : Measure X) (𝓑 : Set ι) (c : ι → X) (r : ι → ℝ)
(p : ℝ) (u : X → E) (x : X) : ℝ≥0∞ :=
(p : ℝ) (u : X → E) (x : X) : ℝ≥0∞ :=
(⨆ i ∈ 𝓑, (ball (c i) (r i)).indicator (x := x)
fun _ ↦ ⨍⁻ y in ball (c i) (r i), ‖u y‖₊ ^ p ∂μ) ^ p⁻¹
fun _ ↦ ⨍⁻ y in ball (c i) (r i), ‖u y‖₊ ^ p ∂μ) ^ p⁻¹

/-- The Hardy-Littlewood maximal function w.r.t. a collection of balls 𝓑 with exponent 1.
M_𝓑 in the blueprint. -/
Expand Down Expand Up @@ -395,13 +395,23 @@ theorem laverage_le_globalMaximalFunction {u : X → E} (hu : AEStronglyMeasurab
def C2_0_6' (A p₁ p₂ : ℝ≥0) : ℝ≥0 := A ^ 2 * C2_0_6 A p₁ p₂

/-- Equation (2.0.46).

easy from `hasStrongType_maximalFunction`. Ideally prove separately
Easy from `hasStrongType_maximalFunction`. Ideally prove separately
`HasStrongType.const_smul` and `HasStrongType.const_mul`. -/
theorem hasStrongType_globalMaximalFunction {p₁ p₂ : ℝ≥0} (hp₁ : 1 ≤ p₁) (hp₁₂ : p₁ < p₂)
{u : X → ℂ} (hu : AEStronglyMeasurable u μ) (h2u : IsBounded (range u)) :
theorem hasStrongType_globalMaximalFunction [BorelSpace X] [IsFiniteMeasureOnCompacts μ] [Nonempty X] [μ.IsOpenPosMeasure] {p₁ p₂ : ℝ≥0} (hp₁ : 1 ≤ p₁) (hp₁₂ : p₁ < p₂) :
HasStrongType (fun (u : X → E) (x : X) ↦ globalMaximalFunction μ p₁ u x |>.toReal)
p₂ p₂ μ μ (C2_0_6' A p₁ p₂) := by
p₂ p₂ μ μ (C2_0_6 A p₁ p₂) := by
unfold globalMaximalFunction
simp_rw [ENNReal.toReal_mul]
apply HasStrongType.const_mul
refine hasStrongType_maximalFunction ?_ hp₁ hp₁₂
/- The problem here is that `hasStrongType_maximalFunction` requires the collection of balls `𝓑`
to be finite, but in our case it is `((covering_separable_space X).choose ×ˢ (univ : Set ℤ))`,
which is obviously not finite. I think the lemma can actually be generalized to (at least)
countable collections, which would suffice in our case. This generalization should boil down to
the generalization of `SublinearOn.maximalFunction` to the (at least) countable case.
-/
sorry



end GMF
9 changes: 9 additions & 0 deletions Carleson/WeakType.lean
Original file line number Diff line number Diff line change
Expand Up @@ -378,4 +378,13 @@ lemma HasStrongType.hasBoundedStrongType (h : HasStrongType T p p' μ ν c) :
HasBoundedStrongType T p p' μ ν c :=
fun f hf _ _ ↦ h f hf

-- lemma HasStrongType.const_smul

lemma HasStrongType.const_mul {E E' α α' : Type*} [NormedAddCommGroup E] [NormedAddCommGroup E']
[Mul E']
{_x : MeasurableSpace α} {_x' : MeasurableSpace α'} {T : (α → E) → (α' → E')}
{p p' : ℝ≥0∞} {μ : Measure α} {ν : Measure α'} {c : ℝ≥0} (h : HasStrongType T p p' μ ν c) (e : E') :
HasStrongType (fun f x ↦ e * T f x) p p' μ ν c := by
sorry

end MeasureTheory