forked from PaddlePaddle/Paddle
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
【NPU】Support npu kernel for mul op (PaddlePaddle#31584)
* add mul * add test mul
- Loading branch information
1 parent
9ed9b8a
commit b7ba6a2
Showing
2 changed files
with
569 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,243 @@ | ||
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include <memory> | ||
#include <string> | ||
|
||
#include "paddle/fluid/operators/mul_op.h" | ||
#include "paddle/fluid/operators/npu_op_runner.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
|
||
template <typename DeviceContext, typename T> | ||
class MulNPUKernel : public framework::OpKernel<T> { | ||
public: | ||
void Compute(const framework::ExecutionContext& ctx) const override { | ||
auto* x = ctx.Input<framework::Tensor>("X"); | ||
auto* y = ctx.Input<framework::Tensor>("Y"); | ||
auto* out = ctx.Output<framework::Tensor>("Out"); | ||
int x_num_col_dims = ctx.Attr<int>("x_num_col_dims"); | ||
int y_num_col_dims = ctx.Attr<int>("y_num_col_dims"); | ||
auto stream = | ||
ctx.template device_context<paddle::platform::NPUDeviceContext>() | ||
.stream(); | ||
if (x_num_col_dims == 1 && y_num_col_dims == 1) { | ||
if (x->dims().size() == 2 && y->dims().size() == 2) { | ||
out->mutable_data<T>(ctx.GetPlace()); | ||
auto runner = | ||
NpuOpRunner("MatMul", {*x, *y}, {*out}, | ||
{{"transpose_x1", false}, {"transpose_x2", false}}); | ||
|
||
runner.Run(stream); | ||
} else if (x->dims().size() == 3 && y->dims().size() == 2) { | ||
// reshape | ||
Tensor tmp_x(x->type()); | ||
int64_t sec_dim = x->dims()[1] * x->dims()[2]; | ||
int64_t first_dim = x->dims()[0]; | ||
tmp_x.Resize(framework::make_ddim({first_dim, sec_dim})); | ||
tmp_x.mutable_data<T>(ctx.GetPlace()); | ||
framework::TensorCopy( | ||
*x, ctx.GetPlace(), | ||
ctx.template device_context<platform::DeviceContext>(), &tmp_x); | ||
tmp_x.Resize(framework::make_ddim({first_dim, sec_dim})); | ||
out->mutable_data<T>(ctx.GetPlace()); | ||
// matmul | ||
auto runner = | ||
NpuOpRunner("MatMul", {tmp_x, *y}, {*out}, | ||
{{"transpose_x1", false}, {"transpose_x2", false}}); | ||
runner.Run(stream); | ||
} else { | ||
PADDLE_THROW(platform::errors::InvalidArgument("not suppert dims")); | ||
} | ||
// to do other | ||
} else if (x->dims().size() == 3 && y->dims().size() == 2) { | ||
// for example: x.shape=[2, 3, 4] y.shape=[4, 5], expect [2, 3, 5] | ||
PADDLE_ENFORCE_EQ(x_num_col_dims, 2, | ||
platform::errors::InvalidArgument( | ||
"now only support x_num_col_dims == 2: but got %d", | ||
x_num_col_dims)); | ||
// flatten => x.shape=[6, 4] | ||
Tensor tmp_x(x->type()); | ||
int64_t first_dim = x->dims()[0] * x->dims()[1]; | ||
int64_t sec_dim = x->dims()[2]; | ||
tmp_x.Resize(framework::make_ddim({first_dim, sec_dim})); | ||
tmp_x.mutable_data<T>(ctx.GetPlace()); | ||
framework::TensorCopy( | ||
*x, ctx.GetPlace(), | ||
ctx.template device_context<platform::DeviceContext>(), &tmp_x); | ||
tmp_x.Resize(framework::make_ddim({first_dim, sec_dim})); | ||
|
||
// matmul [6,4] , [4, 5] => [6, 5] | ||
Tensor tmp_matmul(x->type()); | ||
tmp_matmul.Resize(framework::make_ddim({first_dim, y->dims()[1]})); | ||
tmp_matmul.mutable_data<T>(ctx.GetPlace()); | ||
|
||
auto runner_matmul = | ||
NpuOpRunner("MatMul", {tmp_x, *y}, {tmp_matmul}, | ||
{{"transpose_x1", false}, {"transpose_x2", false}}); | ||
|
||
runner_matmul.Run(stream); | ||
// reshape [6, 5] => [2, 3, 5] | ||
(*out).Resize( | ||
framework::make_ddim({x->dims()[0], x->dims()[1], y->dims()[1]})); | ||
out->mutable_data(ctx.GetPlace(), x->type()); | ||
framework::TensorCopy( | ||
tmp_matmul, ctx.GetPlace(), | ||
ctx.template device_context<platform::DeviceContext>(), out); | ||
(*out).Resize( | ||
framework::make_ddim({x->dims()[0], x->dims()[1], y->dims()[1]})); | ||
} | ||
} | ||
}; | ||
|
||
template <typename DeviceContext, typename T> | ||
class MulGradNPUKernel : public framework::OpKernel<T> { | ||
public: | ||
void Compute(const framework::ExecutionContext& ctx) const override { | ||
auto* x = ctx.Input<framework::Tensor>("X"); | ||
auto* y = ctx.Input<framework::Tensor>("Y"); | ||
auto* dout = ctx.Input<framework::Tensor>(framework::GradVarName("Out")); | ||
auto* dx = ctx.Output<framework::Tensor>(framework::GradVarName("X")); | ||
auto* dy = ctx.Output<framework::Tensor>(framework::GradVarName("Y")); | ||
int x_num_col_dims = ctx.Attr<int>("x_num_col_dims"); | ||
int y_num_col_dims = ctx.Attr<int>("y_num_col_dims"); | ||
auto stream = | ||
ctx.template device_context<paddle::platform::NPUDeviceContext>() | ||
.stream(); | ||
if (x_num_col_dims == 1 && y_num_col_dims == 1) { | ||
if (x->dims().size() == 2 && y->dims().size() == 2) { | ||
if (dx) { | ||
dx->mutable_data<T>(ctx.GetPlace()); | ||
auto runner_dx = | ||
NpuOpRunner("MatMul", {*dout, *y}, {*dx}, | ||
{{"transpose_x1", false}, {"transpose_x2", true}}); | ||
|
||
runner_dx.Run(stream); | ||
} | ||
|
||
if (dy) { | ||
dy->mutable_data<T>(ctx.GetPlace()); | ||
auto runner_dy = | ||
NpuOpRunner("MatMul", {*x, *dout}, {*dy}, | ||
{{"transpose_x1", true}, {"transpose_x2", false}}); | ||
|
||
runner_dy.Run(stream); | ||
} | ||
} else if (x->dims().size() == 3 && y->dims().size() == 2) { | ||
// flatten => x.shape=[6, 4] | ||
// matmul | ||
if (dx) { | ||
// matmul [2, 5] * [12, 5] => [2, 12] | ||
Tensor tmp_matmul(y->type()); | ||
tmp_matmul.Resize( | ||
framework::make_ddim({dout->dims()[0], y->dims()[0]})); | ||
tmp_matmul.mutable_data<T>(ctx.GetPlace()); | ||
auto runner_matmul = | ||
NpuOpRunner("MatMul", {*dout, *y}, {tmp_matmul}, | ||
{{"transpose_x1", false}, {"transpose_x2", true}}); | ||
runner_matmul.Run(stream); | ||
// reshape [2, 12] => [2, 3, 4] | ||
dx->mutable_data(ctx.GetPlace(), x->type()); | ||
framework::TensorCopy( | ||
tmp_matmul, ctx.GetPlace(), | ||
ctx.template device_context<platform::DeviceContext>(), dx); | ||
} | ||
|
||
if (dy) { | ||
// flatten | ||
Tensor tmp_x(x->type()); | ||
int64_t sec_dim = x->dims()[1] * x->dims()[2]; | ||
int64_t first_dim = x->dims()[0]; | ||
tmp_x.Resize(framework::make_ddim({first_dim, sec_dim})); | ||
tmp_x.mutable_data<T>(ctx.GetPlace()); | ||
framework::TensorCopy( | ||
*x, ctx.GetPlace(), | ||
ctx.template device_context<platform::DeviceContext>(), &tmp_x); | ||
tmp_x.Resize(framework::make_ddim({first_dim, sec_dim})); | ||
dy->mutable_data<T>(ctx.GetPlace()); | ||
auto runner_dy = | ||
NpuOpRunner("MatMul", {tmp_x, *dout}, {*dy}, | ||
{{"transpose_x1", true}, {"transpose_x2", false}}); | ||
|
||
runner_dy.Run(stream); | ||
} | ||
} | ||
} else if (x->dims().size() == 3 && y->dims().size() == 2) { | ||
// for example: x.shape=[2, 3, 4] y.shape=[4, 5], expect [2, 3, 5] | ||
PADDLE_ENFORCE_EQ(x_num_col_dims, 2, | ||
platform::errors::InvalidArgument( | ||
"now only support x_num_col_dims == 2: but got %d", | ||
x_num_col_dims)); | ||
// tmp_dout both used by dx and dy | ||
Tensor tmp_dout(x->type()); | ||
int64_t dout_first_dim = dout->dims()[0] * dout->dims()[1]; | ||
int64_t dout_sec_dim = dout->dims()[2]; | ||
tmp_dout.Resize(framework::make_ddim({dout_first_dim, dout_sec_dim})); | ||
tmp_dout.mutable_data<T>(ctx.GetPlace()); | ||
framework::TensorCopy( | ||
*dout, ctx.GetPlace(), | ||
ctx.template device_context<platform::DeviceContext>(), &tmp_dout); | ||
tmp_dout.Resize(framework::make_ddim({dout_first_dim, dout_sec_dim})); | ||
|
||
if (dx) { | ||
// tmp_dout * y [6,5] * [4,5] => [6, 4] | ||
Tensor tmp_matmul(y->type()); | ||
tmp_matmul.Resize(framework::make_ddim({dout_first_dim, y->dims()[0]})); | ||
tmp_matmul.mutable_data<T>(ctx.GetPlace()); | ||
auto runner_matmul = | ||
NpuOpRunner("MatMul", {tmp_dout, *y}, {tmp_matmul}, | ||
{{"transpose_x1", false}, {"transpose_x2", true}}); | ||
runner_matmul.Run(stream); | ||
// reshape [6,4] => [2, 3, 4] | ||
dx->mutable_data(ctx.GetPlace(), x->type()); | ||
framework::TensorCopy( | ||
tmp_matmul, ctx.GetPlace(), | ||
ctx.template device_context<platform::DeviceContext>(), dx); | ||
} | ||
if (dy) { | ||
// flatten x.shape [2,3,4] => [6, 4] | ||
Tensor tmp_x(x->type()); | ||
int64_t first_dim = x->dims()[0] * x->dims()[1]; | ||
int64_t sec_dim = x->dims()[2]; | ||
tmp_x.Resize(framework::make_ddim({first_dim, sec_dim})); | ||
tmp_x.mutable_data<T>(ctx.GetPlace()); | ||
framework::TensorCopy( | ||
*x, ctx.GetPlace(), | ||
ctx.template device_context<platform::DeviceContext>(), &tmp_x); | ||
tmp_x.Resize(framework::make_ddim({first_dim, sec_dim})); | ||
// mamtul [6,4] [6,5] =>[4,5] | ||
dy->mutable_data<T>(ctx.GetPlace()); | ||
auto runner_dy = | ||
NpuOpRunner("MatMul", {tmp_x, tmp_dout}, {*dy}, | ||
{{"transpose_x1", true}, {"transpose_x2", false}}); | ||
runner_dy.Run(stream); | ||
} | ||
} | ||
} | ||
}; | ||
|
||
} // namespace operators | ||
} // namespace paddle | ||
|
||
namespace ops = paddle::operators; | ||
|
||
REGISTER_OP_NPU_KERNEL( | ||
mul, ops::MulNPUKernel<paddle::platform::NPUDeviceContext, float>, | ||
ops::MulNPUKernel<paddle::platform::NPUDeviceContext, | ||
paddle::platform::float16>); | ||
REGISTER_OP_NPU_KERNEL( | ||
mul_grad, ops::MulGradNPUKernel<paddle::platform::NPUDeviceContext, float>, | ||
ops::MulGradNPUKernel<paddle::platform::NPUDeviceContext, | ||
paddle::platform::float16>); |
Oops, something went wrong.