-
Notifications
You must be signed in to change notification settings - Fork 601
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Co-authored-by: SuBazinga <suqingkun@gmail.com>
- Loading branch information
1 parent
ad5c78f
commit 9a88e62
Showing
13 changed files
with
3,053 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,75 @@ | ||
exp_name: 'stage1' | ||
output_dir: './exp_output' | ||
seed: 42 | ||
resume_from_checkpoint: '' | ||
|
||
checkpointing_steps: 2000 | ||
save_model_epoch_interval: 20 | ||
|
||
data: | ||
train_bs: 4 | ||
video_folder: '' # Your data root folder | ||
guids: | ||
- 'depth' | ||
- 'normal' | ||
- 'semantic_map' | ||
- 'dwpose' | ||
image_size: 768 | ||
bbox_crop: false | ||
bbox_resize_ratio: [0.9, 1.5] | ||
aug_type: "Resize" | ||
data_parts: | ||
- "all" | ||
sample_margin: 30 | ||
|
||
validation: | ||
validation_steps: 1000 | ||
ref_images: | ||
- validation_data/ref_images/val-0.png | ||
guidance_folders: | ||
- validation_data/guid_sequences/0 | ||
guidance_indexes: [0, 30, 60, 90, 120] | ||
|
||
solver: | ||
gradient_accumulation_steps: 1 | ||
mixed_precision: 'fp16' | ||
enable_xformers_memory_efficient_attention: True | ||
gradient_checkpointing: False | ||
max_train_steps: 100000 # 50000 | ||
max_grad_norm: 1.0 | ||
# lr | ||
learning_rate: 1.0e-5 | ||
scale_lr: False | ||
lr_warmup_steps: 1 | ||
lr_scheduler: 'constant' | ||
|
||
# optimizer | ||
use_8bit_adam: False | ||
adam_beta1: 0.9 | ||
adam_beta2: 0.999 | ||
adam_weight_decay: 1.0e-2 | ||
adam_epsilon: 1.0e-8 | ||
|
||
noise_scheduler_kwargs: | ||
num_train_timesteps: 1000 | ||
beta_start: 0.00085 | ||
beta_end: 0.012 | ||
beta_schedule: "scaled_linear" | ||
steps_offset: 1 | ||
clip_sample: false | ||
|
||
guidance_encoder_kwargs: | ||
guidance_embedding_channels: 320 | ||
guidance_input_channels: 3 | ||
block_out_channels: [16, 32, 96, 256] | ||
|
||
base_model_path: 'pretrained_models/stable-diffusion-v1-5' | ||
vae_model_path: 'pretrained_models/sd-vae-ft-mse' | ||
image_encoder_path: 'pretrained_models/image_encoder' | ||
|
||
weight_dtype: 'fp16' # [fp16, fp32] | ||
uncond_ratio: 0.1 | ||
noise_offset: 0.05 | ||
snr_gamma: 5.0 | ||
enable_zero_snr: True | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,103 @@ | ||
exp_name: 'stage2' | ||
output_dir: './exp_output' | ||
seed: 42 | ||
resume_from_checkpoint: '' | ||
|
||
stage1_ckpt_step: 'latest' | ||
stage1_ckpt_dir: '' # stage1 checkpoint folder | ||
|
||
checkpointing_steps: 2000 | ||
save_model_epoch_interval: 20 | ||
|
||
data: | ||
train_bs: 1 | ||
video_folder: '' # Your data root folder | ||
guids: | ||
- 'depth' | ||
- 'normal' | ||
- 'semantic_map' | ||
- 'dwpose' | ||
image_size: 512 | ||
bbox_crop: false | ||
bbox_resize_ratio: [0.9, 1.5] | ||
aug_type: "Resize" | ||
data_parts: | ||
- "all" | ||
sample_frames: 24 | ||
sample_rate: 4 | ||
|
||
validation: | ||
validation_steps: 1000 | ||
clip_length: 24 | ||
ref_images: | ||
- validation_data/ref_images/val-1.png | ||
guidance_folders: | ||
- validation_data/guid_sequences/0 | ||
guidance_indexes: [0, 30, 60, 90, 120] | ||
|
||
solver: | ||
gradient_accumulation_steps: 1 | ||
mixed_precision: 'fp16' | ||
enable_xformers_memory_efficient_attention: True | ||
gradient_checkpointing: True | ||
max_train_steps: 50000 | ||
max_grad_norm: 1.0 | ||
# lr | ||
learning_rate: 1e-5 | ||
scale_lr: False | ||
lr_warmup_steps: 1 | ||
lr_scheduler: 'constant' | ||
|
||
# optimizer | ||
use_8bit_adam: True | ||
adam_beta1: 0.9 | ||
adam_beta2: 0.999 | ||
adam_weight_decay: 1.0e-2 | ||
adam_epsilon: 1.0e-8 | ||
|
||
noise_scheduler_kwargs: | ||
num_train_timesteps: 1000 | ||
beta_start: 0.00085 | ||
beta_end: 0.012 | ||
beta_schedule: "linear" | ||
steps_offset: 1 | ||
clip_sample: false | ||
|
||
guidance_encoder_kwargs: | ||
guidance_embedding_channels: 320 | ||
guidance_input_channels: 3 | ||
block_out_channels: [16, 32, 96, 256] | ||
|
||
unet_additional_kwargs: | ||
use_inflated_groupnorm: true | ||
unet_use_cross_frame_attention: false | ||
unet_use_temporal_attention: false | ||
use_motion_module: true | ||
motion_module_resolutions: | ||
- 1 | ||
- 2 | ||
- 4 | ||
- 8 | ||
motion_module_mid_block: true | ||
motion_module_decoder_only: false | ||
motion_module_type: Vanilla | ||
motion_module_kwargs: | ||
num_attention_heads: 8 | ||
num_transformer_block: 1 | ||
attention_block_types: | ||
- Temporal_Self | ||
- Temporal_Self | ||
temporal_position_encoding: true | ||
temporal_position_encoding_max_len: 32 | ||
temporal_attention_dim_div: 1 | ||
|
||
base_model_path: 'pretrained_models/stable-diffusion-v1-5' | ||
vae_model_path: 'pretrained_models/sd-vae-ft-mse' | ||
image_encoder_path: 'pretrained_models/image_encoder' | ||
mm_path: './pretrained_models/mm_sd_v15_v2.ckpt' | ||
|
||
weight_dtype: 'fp16' # [fp16, fp32] | ||
uncond_ratio: 0.1 | ||
noise_offset: 0.05 | ||
snr_gamma: 5.0 | ||
enable_zero_snr: True |
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,76 @@ | ||
import os | ||
import json | ||
import random | ||
from typing import List | ||
import csv | ||
import glob | ||
from pathlib import Path | ||
|
||
import numpy as np | ||
import pandas as pd | ||
import torch | ||
import torchvision.transforms as transforms | ||
from decord import VideoReader | ||
from PIL import Image | ||
from torch.utils.data import Dataset | ||
from transformers import CLIPImageProcessor | ||
from tqdm import tqdm | ||
|
||
|
||
def process_bbox(bbox, H, W, scale=1.): | ||
# transform a bbox(xmin, ymin, xmax, ymax) to (H, W) square | ||
x_min, y_min, x_max, y_max = bbox | ||
width = x_max - x_min | ||
height = y_max - y_min | ||
|
||
side_length = max(width, height) | ||
|
||
center_x = (x_min + x_max) / 2 | ||
center_y = (y_min + y_max) / 2 | ||
|
||
scaled_side_length = side_length * scale | ||
scaled_xmin = center_x - scaled_side_length / 2 | ||
scaled_xmax = center_x + scaled_side_length / 2 | ||
scaled_ymin = center_y - scaled_side_length / 2 | ||
scaled_ymax = center_y + scaled_side_length / 2 | ||
|
||
scaled_xmin = int(max(0, scaled_xmin)) | ||
scaled_xmax = int(min(W, scaled_xmax)) | ||
scaled_ymin = int(max(0, scaled_ymin)) | ||
scaled_ymax = int(min(H, scaled_ymax)) | ||
|
||
return scaled_xmin, scaled_ymin, scaled_xmax, scaled_ymax | ||
|
||
def crop_bbox(img, bbox, do_resize=False, size=512): | ||
|
||
if isinstance(img, (Path, str)): | ||
img = Image.open(img) | ||
cropped_img = img.crop(bbox) | ||
if do_resize: | ||
cropped_W, cropped_H = cropped_img.size | ||
ratio = size / max(cropped_W, cropped_H) | ||
new_W = cropped_W * ratio | ||
new_H = cropped_H * ratio | ||
cropped_img = cropped_img.resize((new_W, new_H)) | ||
|
||
return cropped_img | ||
|
||
def mask_to_bbox(mask_path): | ||
mask = np.array(Image.open(mask_path))[..., 0] | ||
rows = np.any(mask, axis=1) | ||
cols = np.any(mask, axis=0) | ||
|
||
ymin, ymax = np.where(rows)[0][[0, -1]] | ||
xmin, xmax = np.where(cols)[0][[0, -1]] | ||
return xmin, ymin, xmax, ymax | ||
|
||
def mask_to_bkgd(img_path, mask_path): | ||
img = Image.open(img_path) | ||
img_array = np.array(img) | ||
|
||
mask = Image.open(mask_path).convert("RGB") | ||
mask_array = np.array(mask) | ||
|
||
img_array = np.where(mask_array > 0, img_array, 0) | ||
return Image.fromarray(img_array) | ||
|
Oops, something went wrong.