experiment code for paper "Neural representation of words within phrases: Temporal evolution of color-adjectives and object-nouns during simple composition"
All decoding scripts are in decoding folder. To run the python code: install the packages from requirements.txt and run the python code:
usage: run.py [-h] [-v] [-s {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19}] [--traind {channels}] [--notemp] [--wvec {skipgram}] [-c] [--avg {random}]
[--whcond {straight,ph/li,adj_train,noun_train,phrasal}] [--bpass] [--isperm] [--permnum PERMNUM] [--permst PERMST] [--procnum PROCNUM] [--tgm]
optional arguments:
-h, --help show this help message and exit
-v, --verbose
-s {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19}
subject number
--traind {channels}, -t {channels}
type of train data
--notemp trains on the whole time after stumuli,def notemp=false
--wvec {skipgram} word vector type
-c, --cluster change paths to run on cluster
--avg {random} how to average trials for each examplar
--whcond {straight,ph/li,adj_train,noun_train,phrasal}
condition types for train & test
--bpass bandpasses(low) data at 40 hz
--isperm do permutation test
--permnum PERMNUM number of shuffles for permutation test
--permst PERMST number of shuffles for permutation test
--procnum PROCNUM number of precesses
--tgm do tgm
Data can be found in this repository or osf.
In order to use this data you will need each subject data eg.A0003_ASL_NR_epoch_parsed.mat
which contains the data the corresponding labels
and task
matrises. The mapping of coded numbers in labels
and task
matrix can be found in parse_maps.mat