Skip to content

Commit

Permalink
[examples/batched.swift] add an example swift implementation of batch…
Browse files Browse the repository at this point in the history
…ed & build it in ci to validate SPM is correctly configured for dependencies
  • Loading branch information
zshannon committed Oct 11, 2023
1 parent 233fc1c commit cf00916
Show file tree
Hide file tree
Showing 8 changed files with 308 additions and 1 deletion.
5 changes: 5 additions & 0 deletions .github/workflows/build.yml
Original file line number Diff line number Diff line change
Expand Up @@ -276,6 +276,11 @@ jobs:
run: |
xcodebuild -scheme llama -destination "${{ matrix.destination }}"
- name: Build Swift Example
id: make_build_swift_example
run: |
make swift
windows-latest-cmake:
runs-on: windows-latest

Expand Down
7 changes: 6 additions & 1 deletion Makefile
Original file line number Diff line number Diff line change
Expand Up @@ -617,6 +617,11 @@ metal: examples/metal/metal.cpp ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
endif

ifeq ($(UNAME_S),Darwin)
swift: examples/batched.swift
(cd examples/batched.swift; make build)
endif

build-info.h: $(wildcard .git/index) scripts/build-info.sh
@sh scripts/build-info.sh $(CC) > $@.tmp
@if ! cmp -s $@.tmp $@; then \
Expand All @@ -637,7 +642,7 @@ benchmark-matmult: examples/benchmark/benchmark-matmult.cpp build-info.h ggml.o
run-benchmark-matmult: benchmark-matmult
./$@

.PHONY: run-benchmark-matmult
.PHONY: run-benchmark-matmult swift

vdot: pocs/vdot/vdot.cpp ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
Expand Down
9 changes: 9 additions & 0 deletions examples/batched.swift/.gitignore
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@
.DS_Store
/.build
/Packages
xcuserdata/
DerivedData/
.swiftpm/configuration/registries.json
.swiftpm/xcode/package.xcworkspace/contents.xcworkspacedata
.netrc
swift
6 changes: 6 additions & 0 deletions examples/batched.swift/Makefile
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
.PHONY: build

build:
xcodebuild -scheme batched_swift -destination "generic/platform=macOS" -derivedDataPath build
rm -f ./batched_swift
ln -s ./build/Build/Products/Debug/batched_swift ./batched_swift
22 changes: 22 additions & 0 deletions examples/batched.swift/Package.swift
Original file line number Diff line number Diff line change
@@ -0,0 +1,22 @@
// swift-tools-version: 5.5
// The swift-tools-version declares the minimum version of Swift required to build this package.

import PackageDescription

let package = Package(
name: "batched_swift",
platforms: [.macOS(.v12)],
dependencies: [
.package(name: "llama", path: "../../"),
],
targets: [
// Targets are the basic building blocks of a package, defining a module or a test suite.
// Targets can depend on other targets in this package and products from dependencies.
.executableTarget(
name: "batched_swift",
dependencies: ["llama"],
path: "Sources",
linkerSettings: [.linkedFramework("Foundation"), .linkedFramework("AppKit")]
),
]
)
4 changes: 4 additions & 0 deletions examples/batched.swift/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
This is a swift clone of `examples/batched`.

$ `make`
$ `./swift MODEL_PATH [PROMPT] [PARALLEL]`
255 changes: 255 additions & 0 deletions examples/batched.swift/Sources/main.swift
Original file line number Diff line number Diff line change
@@ -0,0 +1,255 @@
import Foundation
import llama

let arguments = CommandLine.arguments

// Check that we have at least one argument (the model path)
guard arguments.count > 1 else {
print("Usage: swift MODEL_PATH [PROMPT] [PARALLEL]")
exit(1)
}

let modelPath: String = arguments[1]
let prompt: String = arguments.count > 2 ? arguments[2] : "Hello my name is"
let n_parallel: Int = arguments.count > 3 && Int(arguments[3]) != nil ? Int(arguments[3])! : 1

// total length of the sequences including the prompt
let n_len: Int = 32

// init LLM
llama_backend_init(false)
defer {
llama_backend_free()
}

let model_params = llama_model_default_params()
guard let model = llama_load_model_from_file(modelPath.cString(using: .utf8), model_params) else {
print("Failed to load model")
exit(1)
}

defer {
llama_free_model(model)
}

var tokens = tokenize(text: prompt, add_bos: true)

let n_kv_req = UInt32(tokens.count) + UInt32((n_len - Int(tokens.count)) * n_parallel)

var context_params = llama_context_default_params()
context_params.seed = 1234
context_params.n_ctx = n_kv_req
context_params.n_batch = UInt32(max(n_len, n_parallel))
context_params.n_threads = 8
context_params.n_threads_batch = 8

let context = llama_new_context_with_model(model, context_params)
guard context != nil else {
print("Failed to initialize context")
exit(1)
}

defer {
llama_free(context)
}

let n_ctx = llama_n_ctx(context)

print("\nn_len = \(n_len), n_ctx = \(n_ctx), n_batch = \(context_params.n_batch), n_parallel = \(n_parallel), n_kv_req = \(n_kv_req)\n")

if n_kv_req > n_ctx {
print("error: n_kv_req (%d) > n_ctx, the required KV cache size is not big enough\n", n_kv_req)
exit(1)
}

var buffer: [CChar] = []
for id: llama_token in tokens {
print(token_to_piece(token: id, buffer: &buffer) ?? "", terminator: "")
}

print("\n")

var batch = llama_batch_init(max(Int32(tokens.count), Int32(n_parallel)), 0)
defer {
llama_batch_free(batch)
}

// evaluate the initial prompt
batch.n_tokens = Int32(tokens.count)

for (i, token) in tokens.enumerated() {
batch.token[i] = token
batch.pos[i] = Int32(i)
batch.seq_id[i] = 0
batch.logits[i] = 0
}

// llama_decode will output logits only for the last token of the prompt
batch.logits[Int(batch.n_tokens) - 1] = 1

if llama_decode(context, batch) != 0 {
print("llama_decode() failed")
exit(1)
}

for i in 1 ..< n_parallel {
llama_kv_cache_seq_cp(context, 0, Int32(i), 0, batch.n_tokens)
}

if n_parallel > 1 {
print("generating \(n_parallel) sequences ...\n")
}

var streams: [String] = .init(repeating: "", count: n_parallel)
var streamBuffers: [[CChar]] = .init(repeating: [], count: n_parallel)
var i_batch = [Int32](repeating: batch.n_tokens - 1, count: n_parallel)

var n_cur = batch.n_tokens
var n_decode = 0

let t_main_start = ggml_time_us()

while n_cur <= n_len {
// prepare the next batch
batch.n_tokens = 0

// sample the next token for each parallel sequence / stream
for i in 0 ..< n_parallel {
if i_batch[i] < 0 {
// the stream has already finished
continue
}

var n_vocab = llama_n_vocab(model)
var logits = llama_get_logits_ith(context, i_batch[i])

var candidates: [llama_token_data] = .init(repeating: llama_token_data(), count: Int(n_vocab))

for token_id in 0 ..< n_vocab {
candidates.append(llama_token_data(id: token_id, logit: logits![Int(token_id)], p: 0.0))
}

var candidates_p: llama_token_data_array = .init(
data: &candidates,
size: candidates.count,
sorted: false
)

let top_k: Int32 = 40
let top_p: Float = 0.9
let temp: Float = 0.4

llama_sample_top_k(context, &candidates_p, top_k, 1)
llama_sample_top_p(context, &candidates_p, top_p, 1)
llama_sample_temp(context, &candidates_p, temp)

let new_token_id = llama_sample_token(context, &candidates_p)

// const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);

// is it an end of stream? -> mark the stream as finished
if new_token_id == llama_token_eos(context) || n_cur == n_len {
i_batch[i] = -1
// print("")
if n_parallel > 1 {
print("stream \(i) finished at n_cur = \(n_cur)")
}

continue
}

let nextStringPiece = token_to_piece(token: new_token_id, buffer: &streamBuffers[i]) ?? ""

// if there is only one stream, we print immediately to stdout
if n_parallel == 1 {
print(nextStringPiece, terminator: "")
}
streams[i] += nextStringPiece

// push this new token for next evaluation
batch.token[Int(batch.n_tokens)] = new_token_id
batch.pos[Int(batch.n_tokens)] = n_cur
batch.seq_id[Int(batch.n_tokens)] = Int32(i)
batch.logits[Int(batch.n_tokens)] = 1

i_batch[i] = batch.n_tokens

batch.n_tokens += 1

n_decode += 1
}

// all streams are finished
if batch.n_tokens == 0 {
break
}

n_cur += 1

// evaluate the current batch with the transformer model
if llama_decode(context, batch) != 0 {
print("llama_decode() failed")
exit(1)
}
}

if n_parallel > 1 {
print("\n")
for (i, stream) in streams.enumerated() {
print("sequence \(i):\n\n\(prompt)\(stream)\n")
}
}

let t_main_end = ggml_time_us()

print("decoded \(n_decode) tokens in \(String(format: "%.2f", Double(t_main_end - t_main_start) / 1_000_000.0)) s, speed: \(String(format: "%.2f", Double(n_decode) / (Double(t_main_end - t_main_start) / 1_000_000.0))) t/s\n")

llama_print_timings(context)

private func tokenize(text: String, add_bos: Bool) -> [llama_token] {
let n_tokens = text.count + (add_bos ? 1 : 0)
let tokens = UnsafeMutablePointer<llama_token>.allocate(capacity: n_tokens)
let tokenCount = llama_tokenize(model, text, Int32(text.count), tokens, Int32(n_tokens), add_bos)
var swiftTokens: [llama_token] = []
for i in 0 ..< tokenCount {
swiftTokens.append(tokens[Int(i)])
}
tokens.deallocate()
return swiftTokens
}

private func token_to_piece(token: llama_token, buffer: inout [CChar]) -> String? {
var result = [CChar](repeating: 0, count: 8)
let nTokens = llama_token_to_piece(model, token, &result, Int32(result.count))
if nTokens < 0 {
if result.count >= -Int(nTokens) {
result.removeLast(-Int(nTokens))
} else {
result.removeAll()
}
let check = llama_token_to_piece(
model,
token,
&result,
Int32(result.count)
)
assert(check == nTokens)
} else {
result.removeLast(result.count - Int(nTokens))
}
if buffer.isEmpty, let utfString = String(cString: result + [0], encoding: .utf8) {
return utfString
} else {
buffer.append(contentsOf: result)
let data = Data(buffer.map { UInt8(bitPattern: $0) })
if buffer.count >= 4 { // 4 bytes is the max length of a utf8 character so if we're here we need to reset the buffer
buffer = []
}
guard let bufferString = String(data: data, encoding: .utf8) else {
return nil
}
buffer = []
return bufferString
}
return nil
}
1 change: 1 addition & 0 deletions examples/batched.swift/batched_swift

0 comments on commit cf00916

Please sign in to comment.