official code repository for the paper "Beyond AUROC & co. for evaluating out-of-distribution detection performance" published in CVPRW'23
# Generate scores for ID and OOD samples
id_data = np.random.normal(0,0.2,500)
ood_data = np.random.normal(0.4,0.1,500)
# Compute OOD metrics and plot histogram + threshold curve for AUTC
plot_ood_scores(id_data,ood_data)
# standard metrics & thresholds
{'aupr-in': 0.9255299568160484,
'aupr-out': 0.95080956515798,
'auroc': 0.9427345454545454,
'fnr@95tnr': 0.35432499454644867,
'fpr@95tpr': 0.23636363636363636,
'thresh_95tnr': 0.35657367889311314,
'thresh_95tpr': 0.23418827631646175}
# ours
auFNR 0.6044, auFPR 0.1528
--> AUTC 0.3786
The Jupyter notebook contains the code for reproducing the visualizations and OOD performance of the imaginary models in the paper (Figs. 1, 3, 4, 6, 7).
If you use this in your work, please cite our paper:
@INPROCEEDINGS{10208888,
author={Humblot-Renaux, Galadrielle and Escalera, Sergio and Moeslund, Thomas B.},
booktitle={2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)},
title={Beyond AUROC & co. for evaluating out-of-distribution detection performance},
year={2023},
volume={},
number={},
pages={3881-3890},
doi={10.1109/CVPRW59228.2023.00402}}