Language-Table is a suite of human-collected datasets and a multi-task continuous control benchmark for open vocabulary visuolinguomotor learning.
Installation with pip
. requirements.txt
contains dependencies for running
the environment and simple dataset examples.
python3 -m venv ./ltvenv
source ./ltvenv/bin/activate
pip install -r ./requirements.txt
export PYTHONPATH=${PWD}:$PYTHONPATH
For running the full train script, install using requirements_static.txt
, as
this contains pinned versions for running the full train script.
python3 -m venv ./ltvenvtrain
source ./ltvenvtrain/bin/activate
pip install --no-deps -r ./requirements_static.txt
export PYTHONPATH=${PWD}:$PYTHONPATH
Run and edit the following examples:
Load the environment and run 5 random steps:
python3 language_table/examples/environment_example.py
Load dataset and print first 5 elements:
python3 language_table/examples/dataset_example.py
source ./ltvenvtrain/bin/activate
mkdir -p /tmp/language_table_train/
PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python python language_table/train/main.py --config=./language_table/train/configs/language_table_sim_local.py --workdir=/tmp/language_table_train/
See the colab for a more complete tutorial.
import tensorflow_datasets as tfds
data_directory = 'gs://gresearch/robotics/language_table/0.0.1/'
dataset = tfds.builder_from_directory(data_directory).as_dataset()
from language_table.environments import blocks
from language_table.environments import language_table
from language_table.environments.rewards import block2block
env = language_table.LanguageTable(
block_mode=blocks.LanguageTableBlockVariants.BLOCK_8,
reward_factory=block2block.BlockToBlockReward,
control_frequency=10.0,
)
obs = env.reset()
- Real Robot
- language_table: 442,226 episodes of real robot relabeled data.
- Simulation (human)
- language_table_sim: 181,020 episodes of simulation relabeled data.
- language_table_blocktoblock_sim: 8,000 episodes of single task "block to block" data.
- language_table_blocktoblock_4block_sim: 8,298 episodes of single task "block to block" data in the 4 block configuration.
- Simulation (oracle)
- language_table_blocktoblock_oracle_sim: 200,000 episodes of single task "block to block" data from an oracle scripted agent.
- language_table_blocktoblockrelative_oracle_sim: 200,000 episodes of single task "block-to-block-relative" data from an oracle scripted agent.
- language_table_blocktoabsolute_oracle_sim: 200,000 episodes of single task "block to absolute location" data from an oracle scripted agent.
- language_table_blocktorelative_oracle_sim: 200,000 episodes of single task "block to relative location" data from an oracle scripted agent.
- language_table_separate_oracle_sim: 200,000 episodes of single task "separate blocks" data from an oracle scripted agent.
Dataset | Real/sim | Controlled by | Language-labeled by | # episodes |
---|---|---|---|---|
language_table | real | human | human | 442,226 |
language_table_sim | sim | human | human | 181,020 |
language_table_blocktoblock_sim | sim | human | scripted | 8,000 |
language_table_blocktoblock_4block_sim | sim | human | scripted | 8,298 |
language_table_blocktoblock_oracle_sim | sim | oracle | scripted | 200,000 |
language_table_blocktoblockrelative_oracle_sim | sim | oracle | scripted | 200,000 |
language_table_blocktoabsolute_oracle_sim | sim | oracle | scripted | 200,000 |
language_table_blocktorelative_oracle_sim | sim | oracle | scripted | 200,000 |
language_table_separate_oracle_sim | sim | oracle | scripted | 200,000 |
Dataset | Data Location |
---|---|
language_table | gs://gresearch/robotics/language_table |
language_table_sim | gs://gresearch/robotics/language_table_sim |
language_table_blocktoblock_sim | gs://gresearch/robotics/language_table_blocktoblock_sim |
language_table_blocktoblock_4block_sim | gs://gresearch/robotics/language_table_blocktoblock_4block_sim |
language_table_blocktoblock_oracle_sim | gs://gresearch/robotics/language_table_blocktoblock_oracle_sim |
language_table_blocktoblockrelative_oracle_sim | gs://gresearch/robotics/language_table_blocktoblockrelative_oracle_sim |
language_table_blocktoabsolute_oracle_sim | gs://gresearch/robotics/language_table_blocktoabsolute_oracle_sim |
language_table_blocktorelative_oracle_sim | gs://gresearch/robotics/language_table_blocktorelative_oracle_sim |
language_table_separate_oracle_sim | gs://gresearch/robotics/language_table_separate_oracle_sim |
Name | Config | Checkpoint Location |
---|---|---|
BC+ResNet Sim | language_table/train/configs/language_table_resnet_sim_local.py | gs://gresearch/robotics/language_table_checkpoints/bc_resnet_sim_checkpoint_955000 |
Corey Lynch, Ayzaan Wahid, Jonathan Tompson, Tianli Ding, James Betker, Robert Baruch, Travis Armstrong, Pete Florence
Abstract. We present a framework for building interactive, real-time, natural language-instructable robots in the real world, and we open source related assets (dataset, environment, benchmark, and policies). Trained with behavioral cloning on a dataset of hundreds of thousands of language-annotated trajectories, a produced policy can proficiently execute an order of magnitude more commands than previous works: specifically we estimate a 93.5% success rate on a set of 87,000 unique natural language strings specifying raw end-to-end visuolinguo-motor skills in the real world. We find that the same policy is capable of being guided by a human via real-time language to address a wide range of precise long-horizon rearrangement goals, e.g. "make a smiley face out of blocks". The dataset we release comprises nearly 600,000 language-labeled trajectories, an order of magnitude larger than prior available datasets. We hope the demonstrated results and associated assets enable further advancement of helpful, capable, natural-language-interactable robots.
This is not an officially supported Google product.