Skip to content

gozsoy/3d-human-motion-forecasting

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Installation

  1. Download data Human3.6m in exponential map can be downloaded from here.

    Directory structure:

    H3.6m
    |-- S1
    |-- S5
    |-- S6
    |-- ...
    `-- S11

    AMASS from their official website.

    Directory structure:

    amass
    |-- ACCAD
    |-- BioMotionLab_NTroje
    |-- CMU
    |-- ...
    `-- Transitions_mocap

    Put all the downloaded datasets in ../datasets directory.

  2. Create the environment

    conda env create -f environment.yml
  3. Activate the environment

    conda activate dlproject
  4. Get into src folder

    cd src/

    Training Scripts

  5. Submit the train task to GPU with the following command (indicated time necessary to reproduce results)

    • Original STSGCN + TCN:
    bsub -n 6 -W 24:00 -o output -R "rusage[mem=8192, ngpus_excl_p=1]" -R "select[gpu_mtotal0>=10240]" python train.py --data_dir DATA_DIR --dataset DATASET --output_n OUTPUT_N
    • Simple RNN/GRU/LSTM:
    bsub -n 6 -W 24:00 -o output -R "rusage[mem=8192, ngpus_excl_p=1]" -R "select[gpu_mtotal0>=10240]" python train.py --data_dir DATA_DIR --dataset DATASET --output_n OUTPUT_N --gen_model simple_rnn --recurrent_cell RECURRENT_CELL --gen_clip_grad 1.0 --gen_lr 0.001
    • STSGCNEncoder + AttentionDecoder:
    bsub -n 6 -W 24:00 -o output -R "rusage[mem=8192, ngpus_excl_p=1]" -R "select[gpu_mtotal0>=10240]" python train.py --data_dir DATA_DIR --dataset DATASET --output_n OUTPUT_N --gen_model stsgcn_transformer --gen_milestones 5 15 25 35 --gen_clip_grad 1.0
    • STSGCNEncoder + RNNDecoder:
    bsub -n 6 -W 24:00 -o output -R "rusage[mem=8192, ngpus_excl_p=1]" -R "select[gpu_mtotal0>=10240]" python train.py --data_dir DATA_DIR --dataset DATASET --output_n OUTPUT_N --gen_model rnn_stsE --batch_size 64 --gen_lr 0.001 --early_stop_patience 5 --gen_clip_grad 1.0 --recurrent_cell RECURRENT_CELL
    • STSGCN + MotionDisc:

      • Amass:
      bsub -n 6 -W 24:00 -o output -R "rusage[mem=8192, ngpus_excl_p=1]" -R "select[gpu_mtotal0>=10240]" python train.py --data_dir DATA_DIR --dataset amass_3d --output_n OUTPUT_N --gen_model stsgcn --gen_clip_grad 10 --use_disc
      • H36M:
      bsub -n 6 -W 24:00 -o output -R "rusage[mem=8192, ngpus_excl_p=1]" -R "select[gpu_mtotal0>=10240]" python train.py --data_dir DATA_DIR --dataset h36m_3d --output_n OUTPUT_N --gen_model stsgcn --use_disc
    • STSGCNEncoder + RNNDecoder + MotionDisc:

    bsub -n 6 -W 24:00 -o output -R "rusage[mem=8192, ngpus_excl_p=1]" -R "select[gpu_mtotal0>=10240]" python train.py --data_dir DATA_DIR --dataset DATASET --output_n OUTPUT_N --gen_model rnn_stsE --batch_size 64 --gen_lr 0.001 --early_stop_patience 10 --gen_clip_grad 1.0 --recurrent_cell RECURRENT_CELL --use_disc
    • STSGCNEncoder + AttentionDecoder + MotionDisc:
    bsub -n 6 -W 24:00 -o output -R "rusage[mem=8192, ngpus_excl_p=1]" -R "select[gpu_mtotal0>=10240]" python train.py --data_dir DATA_DIR --dataset DATASET --output_n OUTPUT_N --gen_model stsgcn_transformer --gen_milestones 5 15 25 35 --use_disc

    DATA_DIR should be the directory where the datasets are located

    DATASET should be amass_3d or h36m_3d

    OUTPUT_N should be 10 or 25

    RECURRENT_CELL should be lstm or gru or rnn

    Testing Scripts

  6. Submit the test task to GPU with the following command

    • Original STSGCN + TCN:
    bsub -n 6 -W 4:00 -o output -R "rusage[mem=8192, ngpus_excl_p=1]" -R "select[gpu_mtotal0>=10240]" python test.py --data_dir DATA_DIR --dataset DATASET --output_n OUTPUT_N --model_loc MODEL_LOCATION
    • Simple RNN/GRU/LSTM:
    bsub -n 6 -W 4:00 -o output -R "rusage[mem=8192, ngpus_excl_p=1]" -R "select[gpu_mtotal0>=10240]" python test.py --data_dir DATA_DIR --dataset DATASET --output_n OUTPUT_N --gen_model simple_rnn --recurrent_cell RECURRENT_CELL --model_loc MODEL_LOCATION
    • STSGCNEncoder + AttentionDecoder:
    bsub -n 6 -W 4:00 -o output -R "rusage[mem=8192, ngpus_excl_p=1]" -R "select[gpu_mtotal0>=10240]" python test.py --data_dir DATA_DIR --dataset DATASET --output_n OUTPUT_N --gen_model stsgcn_transformer --model_loc MODEL_LOCATION
    • STSGCNEncoder + RNNDecoder:
    bsub -n 6 -W 4:00 -o output -R "rusage[mem=8192, ngpus_excl_p=1]" -R "select[gpu_mtotal0>=10240]" python test.py --data_dir DATA_DIR --dataset DATASET --output_n OUTPUT_N --gen_model rnn_stsE --batch_size 64 --recurrent_cell RECURRENT_CELL --model_loc MODEL_LOCATION

    MODEL_LOCATION is the location of stored best_model after training

Note: This repository borrows code from https://github.com/FraLuca/STSGCN

Releases

No releases published

Packages

No packages published

Languages