An interactive web application that helps users analyze call transcripts to assess customer willingness to pay.
- Analyzes call transcripts to assess customer willingness to pay
- Customizable system prompts and analysis criteria
- Dark/light theme support
- Interactive results table with detailed modal view
- Keyboard navigation support
- Secure authentication via LLM Foundry API
- Supports multiple transcript analysis in batch
- JSON schema validation for consistent responses
- Log in using your LLM Foundry credentials
- Either use the default transcripts or enter your own:
- Add transcripts separated by
==========
- Customize the system prompt if needed
- Modify the analysis criteria (one per line)
- Add transcripts separated by
- Click "Analyze" to process the transcripts
- View results in the interactive table:
- ✅ indicates positive responses
- ❌ indicates negative responses
- Click any row to view detailed analysis
- Use ↑/↓ keys to navigate between results
- Clone this repository:
git clone https://github.com/gramener/willingnesstopay.git
cd willingnesstopay
- Serve the files using any static web server. For example, using Python:
python -m http.server
- Open
http://localhost:8000
in your web browser
On Cloudflare DNS,
proxy CNAME willingnesstopay.straive.app
to gramener.github.io
.
On this repository's page settings, set
- Source:
Deploy from a branch
- Branch:
main
- Folder:
/
The application follows a simple single-page architecture:
- Frontend-only implementation using vanilla JavaScript and ESM modules
- Streaming LLM responses for real-time analysis feedback
- Bootstrap for responsive UI components
- lit-html for efficient DOM updates
- JSON schema validation for API responses
- lit-html: Template rendering
- asyncLLM: Streaming LLM responses
- partial-json: JSON parsing
- Bootstrap: UI framework
- Bootstrap Icons: Icon set
The application uses the LLM Foundry API for:
- Authentication via token-based access
- GPT-4 powered transcript analysis
- Streaming response handling
├── index.html # Main HTML file
├── script.js # Main application logic
├── style.css # Styling
└── README.md # Documentation