NVIDIA® TensorRT™ 是一款用于高性能深度学习推理的 SDK,包括深度学习推理优化器和运行时,可为推理应用程序提供低延迟和高吞吐量。基于 NVIDIA TensorRT 的应用程序在推理过程中的执行速度比纯 CPU 平台快 36 倍,使您能够优化在所有主要框架上训练的神经网络模型,以高精度校准低精度,并部署到超大规模数据中心、嵌入式平台或汽车产品平台。
TensorRT 基于 NVIDIA CUDA® 并行编程模型构建,使您能够在 NVIDIA GPU 上使用量化、层和张量融合、内核调整等技术来优化推理。TensorRT 提供 INT8 使用量化感知训练和训练后量化和浮点 16 (FP16) 优化,用于部署深度学习推理应用程序,例如视频流、推荐、欺诈检测和自然语言处理。低精度推理可显著降低延迟,这是许多实时服务以及自主和嵌入式应用所必需的。TensorRT 与 PyTorch 和 TensorFlow 集成,因此只需一行代码即可实现 6 倍的推理速度。TensorRT 提供了一个 ONNX 解析器,因此您可以轻松地将 ONNX 模型从常用框架导入 TensorRT。它还与 ONNX 运行时集成,提供了一种以 ONNX 格式实现高性能推理的简单方法。
基于这些优势,TensorRT目前在深度模型部署应用越来越广泛。但是TensorRT目前只提供了C++与Python接口,对于跨语言使用十分不便。目前C#语言已经成为当前编程语言排行榜上前五的语言,也被广泛应用工业软件开发中。为了能够实现在C#中调用TensorRT部署深度学习模型,我们在之前的开发中开发了TensorRT C# API。虽然实现了该接口,但由于数据传输存在问题,当时开发的版本在应用时存在较大的问题。
基于此,我们开发了TensorRT C# API 2.0版本,该版本在开发时充分考虑了上一版本应用时出现的问题,并进行了改进。同时在本版本中,我们对接口进行了优化,使用起来更加简单,并同时提供了相关的应用案例,方便开发者进行使用。
TensorRT依赖于CUDA加速,因此需要同时安装CUDA与TensorRT才可以使用,且CUDA与TensorRT版本之间需要对应,否者使用会出现较多问题,因此此处并未提供Nuget包,组要根据自己电脑配置选择合适的版本安装后重新编译本项目源码,
获取耕读应用案例请参考:TensorRT-CSharp-API-Samples
using TensorRTSharp;
using TensorRtSharp.Custom;
序号 | API | 参数解释 | 说明 | |
---|---|---|---|---|
1 | 方法 | OnnxToEngine() | 将onnx模型转为engine | 可以调用封装的TensorRT中的ONNX 解释器,对ONNX模型进行转换,并根据本机设备信息,编译本地模型,将模型转换为TensorRT 支持的engine格式。 |
参数 | string modelPath | 本地ONNX模型地址,只支持ONNX格式,且ONNX模型必须为确定的输入输出,暂不支持动态输入。 | ||
int memorySize | 模型转换时分配的内存大小 |
序号 | API | 参数解释 | 说明 | |
---|---|---|---|---|
1 | 方法 | Nvinfer() | 构造函数/初始化函数 | 初始化Nvinfer类,主要初始化封装的推理引擎,该推理引擎中封装了比较重要的一些类和指针。 |
参数 | string modelPath | - - engine模型路径。 | ||
2 | 方法 | Dims GetBindingDimensions() | 获取绑定的端口的形状信息 | 通过端口编号或者端口名称,获取绑定的端口的形状信息. |
参数 | int index | 绑定端口的编号 | ||
string nodeName | - 绑定端口的名称 | |||
返回值 | Dims | 接口返回一个**Dims**结构体,该结构体包含了节点的维度大小以及每个维度的具体大小。 | ||
3 | 方法 | void LoadInferenceData() | 加载待推理数据接口 | 通过端口编号或者端口名称,将处理好的带推理数据加载到推理通道上。 |
参数 | string nodeName | 待加载推理数据端口的名称。 | ||
int nodeIndex | 待加载推理数据端口的编号。 | |||
float[] data | 处理好的待推理数据,由于目前使用的推理数据多为float类型,因此此处目前只做了该类型接口。 | |||
4 | 方法 | void infer() | 调用推理接口,对加载到推理通道的数据进行推理。 | |
5 | 方法 | void LoadInferenceData() | 获取推理结果: | 通过端口编号或者端口名称,读取推理好的结果数据。 |
参数 | string nodeName | 推理结果数据端口的名称。 | ||
int nodeIndex | 推理结果数据端口的编号。 | |||
返回值 | float[] | 返回值为指定节点的推理结果数据。 |