Skip to content

BenchMetrics - A Systematic Benchmarking Method for Binary-Classification Performance Metrics

License

Notifications You must be signed in to change notification settings

gurol/BenchMetrics

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

A reproducible research compedium of

BenchMetrics: A Systematic Benchmarking Method for Binary-Classification Performance Metrics

Last-changedate License: AGPL v3 ORCiD Open in Code Ocean

Gürol Canbek, Tugba Taskaya Temizel, and Seref Sagiroglu. (2021). BenchMetrics: A Systematic Benchmarking Method for Binary-Classification Performance Metrics. Neural Computing and Applications, Accepted (post-peer-review, pre-copyedit version)

This repository provides ready-to-run open-source R scripts, example metric-spaces (i.e. universal base measure permutations for different sample sizes), and materials (e.g. tabular data and graphics) for benchmarking the robustness of thirteen well-known (classification performance) metrics via the seven new meta-metrics proposed in our article above.

The well-known metrics are True Positive Rate (TPR), True Negative Rate (TNR), Positive Predictive Value (PPV), Negative Predictive Value (NPV), Accuracy (ACC), Informedness (INFORM), Markedness (MARK), Balanced Accuracy (BACC), G (G), Normalized Mutual Information (nMI), F1 (F1), Cohen’s Kappa (CK), and Mathews Correlation Coefficient (MCC).

The proposed novel metric-space concept, seven meta-metrics (metrics about metrics) and two-staged benchmarking method are defined and described in the article.

Note: Please, cite our article if you would like to use and/or adapt the code, datasets, methodology, and other materials provided and let us know. Thank you for your interest.

Quick Start

Run the following commands in terminal and R in the directory having the scripts files provided in this repository.

Create the directories storing benchmark results in terminal or command line.

mkdir results
cd results
mkdir Stage1
mkdir Stage2
mkdir Stage3

Run the benchmark in R.

# Load any metric-space with given sample size.
# Visit http://dx.doi.org/10.17632/64r4jr8c88.1 to download metric-spaces for larger sample sizes.
load('MetricSpaces_Sn_10.RData)
# Source the main experimenter script.
source('Experimenter.R')
# Start the benchmark
benchmark()
# All the results (tabular data and graphics) are stored in the results folder

File Contents

/ [root]
├── (code)
│   ├── BenchmarkX_ExtremeCases.R : Stage-X (extreme cases) benchmarking
│   ├── Benchmark1_MathEvaluation.R : Stage-1 (mathematical evaluation) benchmarking
│   ├── Benchmark2_MetaMetrics.R : Stage-2 (meta-metrics) benchmarking
│   ├── BenchmarkedMetrics.R : Information about the benchmarked 13 metrics
│   ├── Experimenter.R : Experiment three-staged benchmarking for 13 metrics with given Sn
│   ├── Experimenter_BenchmarkStageX.R : Experiment Stage-X benchmarking
│   ├── Experimenter_BenchmarkStage1.R : Experiment Stage-1 benchmarking
│   ├── Experimenter_BenchmarkStage2.R : Experiment Stage-2 benchmarking
│   ├── LICENSE : License file for the codes provided
│   ├── MetaMetricTimeTest.R : A test for revealing the calculation time of the meta-metrics
│   ├── README.md : This introduction file
│   ├── TasKarColors.R : Color information for the benchmarked metrics
│   ├── TasKarMath.R : Common R utilities for mathematical calculations
│   ├── TasKarPlot.R : Plotting R utilities
│   ├── main.R : Main experimentation starter R script
│   ├── run.sh : Shell script (internal)
│   └── utils.R : Common R utilities
│
├── (data)
│   └── MetricSpaces_Sn_[10, 25, 50].RData : Metric-Spaces data for 13 metrics for different sample sizes (Sn).
│                                            Warning: Calculation takes too much time for Sn=50
└── results
    ├── StageX
    │   └── ExtremeCases.csv : The ouputs of 13 benchmarked metrics in 13 extreme cases.
    │
    ├── Stage1
    │   ├── Fig1_MetricSpaceDistribution.png : Density plots for metric-space distribution (also appeared in the article)
    │   └── Fig1_MetricSpaceSmoothness.png : Metric-space output smoothness plots (also appeared in the article)
    │
    └── Stage2
        ├──  1_UBMcorrs.csv : Base measure correlations meta-metrics
        ├──  2_UPuncorrs.csv : Prevalence uncorrelations meta-metrics
        ├──  3_UDists.csv : Distinctness meta-metrics
        ├──  4_UMonos.csv : Monotonicity meta-metrics
        ├──  5_UOsmos.csv : Output smoothness meta-metrics
        └──  6_UConses_and_7_UDiscs.csv : Consistencies and discriminancies meta-metrics