Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add a notebook with a visualization of the aprrox_* functions and their errors #7974

Merged
merged 2 commits into from
Dec 7, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions apps/hannk/halide/common_halide.h
Original file line number Diff line number Diff line change
Expand Up @@ -39,6 +39,8 @@ Halide::Expr align(const Halide::Expr &x, const Halide::Expr &n);
// where N is the number of bits of the narrowed result minus one.
Halide::Expr multiply_2x_high(const Halide::Expr &a, const Halide::Expr &b);

// For a visualization of the approx_* functions and their errors, see:
// apps/hannk/halide/docs/approx_log2_and_applications.ipynb
// Approximate log2(x/2^q_x)*2^q.
// q must be less than 16.
Halide::Expr approx_log2(int q, const Halide::Expr &x, int q_x, const Halide::Type &type = Halide::Int(32));
Expand Down
382 changes: 382 additions & 0 deletions apps/hannk/halide/docs/approx_log2_and_applications.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,382 @@
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
}
},
"cells": [
{
"cell_type": "code",
"metadata": {
"id": "r1XiiUQGUjpx"
},
"source": [
"import numpy as np\n",
"import matplotlib as mpl\n",
"import matplotlib.pyplot as plt\n",
"\n",
"# Many architectures have shifts where the right-hand-side is signed. A negative\n",
"# RHS is the same as a positive shift in the other direction.\n",
"def shift_right(x, y):\n",
" return np.floor(x / 2**y)\n",
"def shift_left(x, y):\n",
" return np.floor(x * 2**y)\n",
"def rounding_shift_right(x, y):\n",
" return np.round(x / 2**y)\n",
"def rounding_shift_left(x, y):\n",
" return np.round(x * 2**y)\n",
"\n",
"def bitwise_and(x, y):\n",
" return np.mod(x, y + 1)\n",
"\n",
"# This is sqrdmulh on ARM\n",
"def multiply_2x_high(x, y):\n",
" return rounding_shift_right(x * y, 15)\n",
"\n",
"def relative_error(x, y):\n",
" return (x - y) / (np.maximum(x, y) + 1e-3)\n",
"\n",
"def plot_results(x, exact, approxs, title, logx = False, logy = False, relative = False, log2_xscale = 0, log2_yscale = 0):\n",
" fig, [p1, p2] = plt.subplots(2, 1)\n",
"\n",
" p1.set_xlabel('x')\n",
" if logx:\n",
" p1.set_xscale('log')\n",
" p1.set_ylabel(title)\n",
" if logy:\n",
" p1.set_yscale('log')\n",
"\n",
" xscale = 2**log2_xscale\n",
" yscale = 2**log2_yscale\n",
"\n",
" exact = np.round(exact*yscale)/yscale\n",
"\n",
" p1.plot(x/xscale, exact)\n",
" for approx in approxs:\n",
" p1.plot(x/xscale, approx/yscale)\n",
"\n",
" p2.set_xlabel('x')\n",
" if logx:\n",
" p2.set_xscale('log')\n",
"\n",
" p2.set_ylabel('relative error' if relative else 'error')\n",
" for approx in approxs:\n",
" p2.plot(x/xscale, relative_error(approx/yscale, exact) if relative else approx/yscale - exact)\n",
"\n",
"def eval_poly(x, p, q):\n",
" x1 = rounding_shift_left(x, 15 - q)\n",
" y = p[0]\n",
" xi = x1\n",
" for i in p[1:]:\n",
" y = y + multiply_2x_high(i, xi)\n",
" xi = multiply_2x_high(xi, x1)\n",
" return rounding_shift_right(y, 15 - q)\n",
"\n",
"points = 6\n",
"degree = 3\n",
"log2_poly_x = np.arange(points, 2 * points + 1) / points\n",
"log2_poly_y = np.log2(log2_poly_x)\n",
"log2_poly = np.polyfit(log2_poly_x - 1, log2_poly_y, degree)\n",
"\n",
"exp2_poly_x = np.arange(points, 2 * points + 1) / points\n",
"exp2_poly_y = np.exp2(exp2_poly_x - 1) - 1\n",
"exp2_poly = np.polyfit(exp2_poly_x - 1, exp2_poly_y, degree)\n",
"\n",
"log2_poly = log2_poly[::-1]\n",
"exp2_poly = exp2_poly[::-1]\n",
"\n",
"print(log2_poly)\n",
"print(exp2_poly)\n",
"\n",
"log2_poly = np.round(log2_poly * 2**15)\n",
"exp2_poly = np.round(exp2_poly * 2**15)\n",
"exp2_poly[0] = 0\n",
"\n",
"print(log2_poly)\n",
"print(exp2_poly)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "1xjo4hIEo_z5"
},
"source": [
"# Approximate N*log2(x*2^q_x), where N = 2^q, and the intermediate computations are\n",
"# restricted to be integers.\n",
"def approx_log2(x, q, q_x = 0):\n",
" # This can be computed with count_leading_zeros\n",
" floor_log2_x = np.select([x > 0], [np.floor(np.log2(x))], [-1])\n",
"\n",
" # We've computed log2(x*2^q_x) = log2(x) + q_x. Subtract that offset now\n",
" # before multiplying by the result quantization.\n",
" result = shift_left(floor_log2_x - q_x, q)\n",
"\n",
" frac = bitwise_and(shift_right(x, floor_log2_x - q), 2**q - 1)\n",
"\n",
" return result + eval_poly(frac, log2_poly, q)\n",
"\n",
"x = np.arange(1, 10000)\n",
"q = 15\n",
"q_x = 2\n",
"log2_x = np.log2(x / 2**q_x)\n",
"approx_log2_x = approx_log2(x, q, q_x)\n",
"\n",
"plot_results(x, log2_x, [approx_log2_x], 'log2(x)', logx=True, log2_xscale=q_x, log2_yscale=q)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "6uJN5muLsLdE"
},
"source": [
"\n",
"# Approximate 2^(x/2^q_x)*2^q\n",
"def approx_exp2(x, q_x, q):\n",
" int_part = shift_right(x, q_x)\n",
" frac_part = x - shift_left(int_part, q_x)\n",
"\n",
" frac_part = eval_poly(frac_part, exp2_poly, q_x)\n",
"\n",
" exp_int_part = shift_left(1, int_part + q)\n",
" return exp_int_part + rounding_shift_right(exp_int_part * frac_part, q_x)\n",
"\n",
"q_x = 10\n",
"q = 15\n",
"x = np.arange(-4000, 2000)\n",
"approx_exp2_x = approx_exp2(x, q_x, q)\n",
"exact = np.exp2(x / 2**q_x)\n",
"\n",
"plot_results(x, exact, [approx_exp2_x], '2^x', False, True, relative=True, log2_xscale=q_x, log2_yscale=q)\n"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "5BP-edzCmNBi"
},
"source": [
"q = 15\n",
"x = np.arange(10, 10000) * 10\n",
"round_trip_x = approx_exp2(approx_log2(x, q), q, 0)\n",
"\n",
"plot_results(x, x, [round_trip_x], '2^log2(x)', logx=True, logy=True, relative=True)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "nyrzI90uNH1s"
},
"source": [
"# Approximate 2^q*sqrt(2^(x/2^q_x))\n",
"def sqrt_approx_exp2(x, q_x, q):\n",
" return approx_exp2(x, q_x + 1, q)\n",
"\n",
"q = 11\n",
"q_x = 8\n",
"x = np.arange(-1000, 2000)\n",
"approx_exp2_x = sqrt_approx_exp2(x, q_x, q)\n",
"exact = np.sqrt(np.exp2(x / 2**q_x))\n",
"\n",
"plot_results(x, exact, [approx_exp2_x], 'sqrt(2^x)', relative=True, log2_xscale=q_x, log2_yscale=q)\n"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "Kno5t4VihCTL"
},
"source": [
"# Approximate sqrt(x) = 2^((1/2)*log2(x))\n",
"def approx_sqrt(x, q):\n",
" # log2(x) will never be larger than 32, for 32-bit x. So to make the result\n",
" # fit in a 16-bit integer, we can make the precision 2^16/32 = 2048.\n",
" q_x = 11;\n",
"\n",
" log2_sqrt_x = approx_log2(x, q_x - 1)\n",
" return approx_exp2(log2_sqrt_x, q_x, q)\n",
"\n",
"q = 15\n",
"x = np.arange(1, 10000)**2\n",
"sqrt_x = np.sqrt(x)\n",
"approx_sqrt_x = approx_sqrt(x, q)\n",
"\n",
"plot_results(x, sqrt_x, [approx_sqrt_x], 'sqrt(x)', log2_yscale=q, relative=True)\n"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "0dMecIGr92WY"
},
"source": [
"# Approximate 2^31/sqrt(x) = 2^(-(1/2)*log2(x))\n",
"def approx_reciprocal_sqrt(x):\n",
" q = 15\n",
" log2_sqrt_x = approx_log2(x, q - 1)\n",
" return approx_exp2(-log2_sqrt_x, q, 31)\n",
"\n",
"x = np.arange(1, 10000)**2\n",
"inv_sqrt_x = 1 / np.sqrt(x)\n",
"approx_reciprocal_sqrt_x = approx_reciprocal_sqrt(x)\n",
"\n",
"plot_results(x, inv_sqrt_x, [approx_reciprocal_sqrt_x], '1/sqrt(x)', True, True, True, log2_yscale=31)\n"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "VFC9aUFcc8d7"
},
"source": [
"# Approximate 2^32/x = 2^32*2^(-log2(x))\n",
"def approx_reciprocal(x):\n",
" q = 15;\n",
" log2_x = approx_log2(x, q)\n",
" return approx_exp2(-log2_x, q, 31)\n",
"\n",
"x = 1.01**np.arange(0, 2000)\n",
"inv_x = 1 / x\n",
"approx_inv_x = approx_reciprocal(x)\n",
"# This is ~sqrt(2) times more accurate, but maybe not practical for large x.\n",
"approx_inv_sqrt_x2 = approx_reciprocal_sqrt(x*x)\n",
"\n",
"plot_results(x, inv_x, [approx_inv_x], '1/x', True, True, log2_yscale=31, relative=True)\n",
"plot_results(x, inv_x, [approx_inv_sqrt_x2], '1/x', True, True, log2_yscale=31, relative=True)\n"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "6BhQzLIZCcKC"
},
"source": [
"# Approximate log2(exp2(x) + c)\n",
"def approx_log2_exp2_plus_constant(x, c, q_x, q):\n",
" # When x/2^q_x is large, approx_exp2 below will overflow. But when it is large\n",
" # we don't need it to be very precise\n",
" q_exp = 16 #np.minimum(16, 16 - np.floor(np.log2(np.maximum(x, 1))))\n",
" one = 2**q_exp\n",
"\n",
" one_plus_exp2_x = one * c + approx_exp2(x, q_x, q_exp)\n",
" # Mimic overflow of int32\n",
" one_plus_exp2_x = np.mod(one_plus_exp2_x, 2**31)\n",
"\n",
" raw = approx_log2(one_plus_exp2_x, q, q_exp)\n",
"\n",
" line = rounding_shift_right(x, q_x - q)\n",
"\n",
" threshold = 30 - q_exp\n",
" result = np.select([shift_right(x, q_x) < threshold], [raw], line)\n",
" return result\n",
"\n",
"def approx_log2p1_exp2(x, q_x, q):\n",
" return approx_log2_exp2_plus_constant(x, 1, q_x, q)\n",
"\n",
"def approx_log2m1_exp2(x, q_x, q):\n",
" return approx_log2_exp2_plus_constant(x, -1, q_x, q)\n",
"\n",
"x = np.arange(-4000, 4000)*8\n",
"q_x = 11\n",
"q = 15\n",
"\n",
"exact = np.log2(np.exp2(x / 2**q_x) + 1)\n",
"approx = approx_log2p1_exp2(x, q_x, q)\n",
"plot_results(x, exact, [approx], 'log2(2^x + 1)', log2_xscale=q_x, log2_yscale=q)\n",
"\n",
"x = np.arange(1, 4000)*8\n",
"exact = np.log2(np.exp2(x / 2**q_x) - 1)\n",
"approx = approx_log2m1_exp2(x, q_x, q)\n",
"plot_results(x, exact, [approx], 'log2(2^x - 1)', log2_xscale=q_x, log2_yscale=q)\n"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "G6n1u8fcUf-3"
},
"source": [
"# Approximate logistic(x) = 1/(e^-x + 1)\n",
"# = 2^log2(1/(e^-x + 1))\n",
"# = 2^-log2(e^-x + 1)\n",
"def approx_logistic(x, q_x, q):\n",
" x2 = multiply_2x_high(x, np.round(-np.log2(np.exp(1)) * 2**14))\n",
" q_exp = 11\n",
" log2_d = approx_log2p1_exp2(x2, q_x - 1, q_exp)\n",
" return approx_exp2(-log2_d, q_exp, q)\n",
"\n",
"x = np.arange(-4000, 4000)*8\n",
"q_x = 11\n",
"q = 15\n",
"exact = 1 / (1 + np.exp(-x / 2**q_x))\n",
"approx = approx_logistic(x, q_x, q)\n",
"plot_results(x, exact, [approx], '1/(1 + e^-x)', log2_xscale=q_x, log2_yscale=q)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "LBXXNc_8twQD"
},
"source": [
"# Approximate tanh(x) = (e^2x - 1)/(e^2x + 1)\n",
"# = 2^log2((e^2x - 1)/(e^2x + 1))\n",
"# = 2^(log2(e^2x - 1) - log2(e^2x + 1))\n",
"def approx_tanh(x, q_x, q):\n",
" abs_x_base2 = multiply_2x_high(np.abs(x), np.round(np.log2(np.exp(1)) * 2**14))\n",
" q_exp = 11\n",
" log2_n = approx_log2m1_exp2(abs_x_base2, q_x - 2, q_exp)\n",
" log2_d = approx_log2p1_exp2(abs_x_base2, q_x - 2, q_exp)\n",
" # Saturate at int16\n",
" log2_n = np.clip(log2_n, -(2**15), 2**15)\n",
" log2_d = np.clip(log2_d, -(2**15), 2**15)\n",
" return np.sign(x) * approx_exp2(log2_n - log2_d, q_exp, q)\n",
"\n",
"x = np.arange(-4000, 4000)*8\n",
"q_x = 12\n",
"q = 15\n",
"exact = np.tanh(x / 2**q_x)\n",
"approx = approx_tanh(x, q_x, q)\n",
"\n",
"points = 20\n",
"poly_x = np.arange(0, points * 3) / points\n",
"poly_y = np.tanh(poly_x)\n",
"poly = np.polyfit(poly_x, poly_y, 6)\n",
"approx2 = np.polyval(poly, x / 2**q_x) * 2**q\n",
"\n",
"\n",
"plot_results(x, exact, [approx], 'tanh(x)', log2_xscale=q_x, log2_yscale=q)"
],
"execution_count": null,
"outputs": []
}
]
}