Skip to content

Commit

Permalink
DOC: update the pandas.Index.drop_duplicates and pandas.Series.drop_d…
Browse files Browse the repository at this point in the history
…uplicates docstring (pandas-dev#20114)
  • Loading branch information
DaanVanHauwermeiren authored and jorisvandenbossche committed Mar 10, 2018
1 parent d7bcb22 commit e5e4ae9
Show file tree
Hide file tree
Showing 3 changed files with 115 additions and 20 deletions.
18 changes: 0 additions & 18 deletions pandas/core/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -1184,24 +1184,6 @@ def searchsorted(self, value, side='left', sorter=None):
# needs coercion on the key (DatetimeIndex does already)
return self.values.searchsorted(value, side=side, sorter=sorter)

_shared_docs['drop_duplicates'] = (
"""Return %(klass)s with duplicate values removed
Parameters
----------
keep : {'first', 'last', False}, default 'first'
- ``first`` : Drop duplicates except for the first occurrence.
- ``last`` : Drop duplicates except for the last occurrence.
- False : Drop all duplicates.
%(inplace)s
Returns
-------
deduplicated : %(klass)s
""")

@Appender(_shared_docs['drop_duplicates'] % _indexops_doc_kwargs)
def drop_duplicates(self, keep='first', inplace=False):
inplace = validate_bool_kwarg(inplace, 'inplace')
if isinstance(self, ABCIndexClass):
Expand Down
46 changes: 45 additions & 1 deletion pandas/core/indexes/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -4017,8 +4017,52 @@ def unique(self, level=None):
result = super(Index, self).unique()
return self._shallow_copy(result)

@Appender(base._shared_docs['drop_duplicates'] % _index_doc_kwargs)
def drop_duplicates(self, keep='first'):
"""
Return Index with duplicate values removed.
Parameters
----------
keep : {'first', 'last', ``False``}, default 'first'
- 'first' : Drop duplicates except for the first occurrence.
- 'last' : Drop duplicates except for the last occurrence.
- ``False`` : Drop all duplicates.
Returns
-------
deduplicated : Index
See Also
--------
Series.drop_duplicates : equivalent method on Series
DataFrame.drop_duplicates : equivalent method on DataFrame
Index.duplicated : related method on Index, indicating duplicate
Index values.
Examples
--------
Generate an pandas.Index with duplicate values.
>>> idx = pd.Index(['lama', 'cow', 'lama', 'beetle', 'lama', 'hippo'])
The `keep` parameter controls which duplicate values are removed.
The value 'first' keeps the first occurrence for each
set of duplicated entries. The default value of keep is 'first'.
>>> idx.drop_duplicates(keep='first')
Index(['lama', 'cow', 'beetle', 'hippo'], dtype='object')
The value 'last' keeps the last occurrence for each set of duplicated
entries.
>>> idx.drop_duplicates(keep='last')
Index(['cow', 'beetle', 'lama', 'hippo'], dtype='object')
The value ``False`` discards all sets of duplicated entries.
>>> idx.drop_duplicates(keep=False)
Index(['cow', 'beetle', 'hippo'], dtype='object')
"""
return super(Index, self).drop_duplicates(keep=keep)

@Appender(base._shared_docs['duplicated'] % _index_doc_kwargs)
Expand Down
71 changes: 70 additions & 1 deletion pandas/core/series.py
Original file line number Diff line number Diff line change
Expand Up @@ -1316,8 +1316,77 @@ def unique(self):

return result

@Appender(base._shared_docs['drop_duplicates'] % _shared_doc_kwargs)
def drop_duplicates(self, keep='first', inplace=False):
"""
Return Series with duplicate values removed.
Parameters
----------
keep : {'first', 'last', ``False``}, default 'first'
- 'first' : Drop duplicates except for the first occurrence.
- 'last' : Drop duplicates except for the last occurrence.
- ``False`` : Drop all duplicates.
inplace : boolean, default ``False``
If ``True``, performs operation inplace and returns None.
Returns
-------
deduplicated : Series
See Also
--------
Index.drop_duplicates : equivalent method on Index
DataFrame.drop_duplicates : equivalent method on DataFrame
Series.duplicated : related method on Series, indicating duplicate
Series values.
Examples
--------
Generate an Series with duplicated entries.
>>> s = pd.Series(['lama', 'cow', 'lama', 'beetle', 'lama', 'hippo'],
... name='animal')
>>> s
0 lama
1 cow
2 lama
3 beetle
4 lama
5 hippo
Name: animal, dtype: object
With the 'keep' parameter, the selection behaviour of duplicated values
can be changed. The value 'first' keeps the first occurrence for each
set of duplicated entries. The default value of keep is 'first'.
>>> s.drop_duplicates()
0 lama
1 cow
3 beetle
5 hippo
Name: animal, dtype: object
The value 'last' for parameter 'keep' keeps the last occurrence for
each set of duplicated entries.
>>> s.drop_duplicates(keep='last')
1 cow
3 beetle
4 lama
5 hippo
Name: animal, dtype: object
The value ``False`` for parameter 'keep' discards all sets of
duplicated entries. Setting the value of 'inplace' to ``True`` performs
the operation inplace and returns ``None``.
>>> s.drop_duplicates(keep=False, inplace=True)
>>> s
1 cow
3 beetle
5 hippo
Name: animal, dtype: object
"""
return super(Series, self).drop_duplicates(keep=keep, inplace=inplace)

@Appender(base._shared_docs['duplicated'] % _shared_doc_kwargs)
Expand Down

0 comments on commit e5e4ae9

Please sign in to comment.