forked from Qiskit/qiskit-aer
-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* Add PauliLindbladError with C++ support Adds a BaseOperator subclass for efficiently working with Pauli channels generated by lindblad dissipators, and add support from sampling from these in Aer simulation. * Add reno and tests * Fix some extra compiler warnings * Fix typo in doc string
- Loading branch information
1 parent
4a5e830
commit 6f20107
Showing
19 changed files
with
1,349 additions
and
50 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,363 @@ | ||
# This code is part of Qiskit. | ||
# | ||
# (C) Copyright IBM 2018-2024. | ||
# | ||
# This code is licensed under the Apache License, Version 2.0. You may | ||
# obtain a copy of this license in the LICENSE.txt file in the root directory | ||
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. | ||
# | ||
# Any modifications or derivative works of this code must retain this | ||
# copyright notice, and modified files need to carry a notice indicating | ||
# that they have been altered from the originals. | ||
|
||
""" | ||
Class for representing a Pauli noise channel generated by a Pauli Lindblad dissipator. | ||
""" | ||
|
||
from __future__ import annotations | ||
from collections.abc import Sequence | ||
import numpy as np | ||
|
||
from qiskit.quantum_info import Pauli, PauliList, SparsePauliOp, ScalarOp, SuperOp | ||
from qiskit.quantum_info.operators.mixins import TolerancesMixin | ||
from .base_quantum_error import BaseQuantumError | ||
from .quantum_error import QuantumError | ||
from .pauli_error import PauliError, sort_paulis | ||
from ..noiseerror import NoiseError | ||
|
||
|
||
class PauliLindbladError(BaseQuantumError, TolerancesMixin): | ||
r"""A Pauli channel generated by a Pauli Lindblad dissipator. | ||
This operator represents an N-qubit quantum error channel | ||
:math:`E(ρ) = e^{\sum_j r_j D_{P_j}}(ρ)` generated by Pauli Lindblad dissipators | ||
:math:`D_P(ρ) = P ρ P - ρ`, where :math:`P_j` are N-qubit :class:`~.Pauli` operators. | ||
The list of Pauli generator terms are stored as a :class:`~.PauliList` and can be | ||
accessed via the :attr:`generators` attribute. The array of dissipator rates | ||
:math:`r_j` can be accessed via the :attr:`rates` attribute. | ||
A Pauli lindblad error is equivalent to a :class:`.PauliError` and can be converted | ||
using the :meth:`to_pauli_error` method. Though note that for a sparse generated | ||
``PauliLindbladError`` there may in general be exponentially many terms in the | ||
converted :class:`.PauliError` operator. Because of this, this operator can be | ||
used to more efficiently represent N-qubit Pauli channels for simulation if they | ||
have few generator terms. | ||
The equivalent Pauli error is constructed as a composition of single-Pauli channel terms | ||
.. math:: | ||
e^{\sum_j r_j D_{P_j}} = \prod_j e^{r_j D_{P_j}} | ||
= prod_j \left( (1 - p_j) S_I + p_j S_{P_j} \right) | ||
where :math:`p_j = \frac12 - \frac12 e^{-2 r_j}`. | ||
.. note:: | ||
This operator can also represent a non-physical (non-CPTP) channel if any of the | ||
rates are negative. Non-physical operators cannot be converted to a | ||
:class:`~.QuantumError` or used in an :class:`~.AerSimulator` simulation. You can | ||
check if an operator is physical using the :meth:`is_cptp` method. | ||
""" | ||
|
||
def __init__( | ||
self, | ||
generators: Sequence[Pauli], | ||
rates: Sequence[float], | ||
): | ||
"""Initialize a Pauli-Lindblad dissipator model. | ||
Args: | ||
generators: A list of Pauli's corresponding to the Lindblad dissipator generator terms. | ||
rates: The Pauli Lindblad dissipator generator rates. | ||
""" | ||
self._generators = PauliList(generators) | ||
self._rates = np.asarray(rates, dtype=float) | ||
if self._rates.shape != (len(self._generators),): | ||
raise NoiseError("Input generators and rates are different lengths.") | ||
super().__init__(num_qubits=self._generators.num_qubits) | ||
|
||
def __repr__(self): | ||
return f"{type(self).__name__}({self.generators.to_labels()}, {self.rates.tolist()})" | ||
|
||
def __eq__(self, other): | ||
# Use BaseOperator eq to check type and shape | ||
if not super().__eq__(other): | ||
return False | ||
lhs = self.simplify() | ||
rhs = other.simplify() | ||
if lhs.size != rhs.size: | ||
return False | ||
lpaulis, lrates = sort_paulis(lhs.generators, lhs.rates) | ||
rpaulis, rrates = sort_paulis(rhs.generators, rhs.rates) | ||
return np.allclose(lrates, rrates) and lpaulis == rpaulis | ||
|
||
@property | ||
def size(self): | ||
"""Return the number of error circuit.""" | ||
return len(self.generators) | ||
|
||
@property | ||
def generators(self) -> PauliList: | ||
"""Return the Pauli Lindblad dissipator generator terms""" | ||
return self._generators | ||
|
||
@property | ||
def rates(self) -> np.ndarray: | ||
"""Return the Lindblad dissipator generator rates""" | ||
return self._rates | ||
|
||
@property | ||
def settings(self): | ||
"""Settings for IBM RuntimeEncoder JSON encoding""" | ||
return { | ||
"generators": self.generators, | ||
"rates": self.rates, | ||
} | ||
|
||
def ideal(self) -> bool: | ||
"""Return True if this error object is composed only of identity operations. | ||
Note that the identity check is best effort and up to global phase.""" | ||
return np.allclose(self.rates, 0) or not ( | ||
np.any(self.generators.z) or np.any(self.generators.x) | ||
) | ||
|
||
def is_cptp(self, atol: float | None = None, rtol: float | None = None) -> bool: | ||
"""Return True if completely-positive trace-preserving (CPTP).""" | ||
return self.is_cp(atol=atol, rtol=rtol) | ||
|
||
def is_tp(self, atol: float | None = None, rtol: float | None = None) -> bool: | ||
"""Test if a channel is trace-preserving (TP)""" | ||
# pylint: disable = unused-argument | ||
# This error is TP by construction regardless of rates. | ||
return True | ||
|
||
def is_cp(self, atol: float | None = None, rtol: float | None = None) -> bool: | ||
"""Test if Choi-matrix is completely-positive (CP)""" | ||
if atol is None: | ||
atol = self.atol | ||
if rtol is None: | ||
rtol = self.rtol | ||
neg_rates = self.rates[self.rates < 0] | ||
return np.allclose(neg_rates, 0, atol=atol, rtol=rtol) | ||
|
||
def tensor(self, other: PauliLindbladError) -> PauliLindbladError: | ||
if not isinstance(other, PauliLindbladError): | ||
raise NoiseError("other must be a PauliLindbladError") | ||
zeros_l = np.zeros(self.num_qubits, dtype=bool) | ||
zeros_r = np.zeros(other.num_qubits, dtype=bool) | ||
gens_left = self.generators.tensor(Pauli((zeros_r, zeros_r))) | ||
gens_right = other.generators.expand(Pauli((zeros_l, zeros_l))) | ||
generators = gens_left + gens_right | ||
rates = np.concatenate([self.rates, other.rates]) | ||
return PauliLindbladError(generators, rates) | ||
|
||
def expand(self, other) -> PauliLindbladError: | ||
if not isinstance(other, PauliLindbladError): | ||
raise NoiseError("other must be a PauliLindbladError") | ||
return other.tensor(self) | ||
|
||
def compose(self, other, qargs=None, front=False) -> PauliLindbladError: | ||
if qargs is None: | ||
qargs = getattr(other, "qargs", None) | ||
if not isinstance(other, PauliLindbladError): | ||
raise NoiseError("other must be a PauliLindbladError") | ||
# Validate composition dimensions and qargs match | ||
self._op_shape.compose(other._op_shape, qargs, front) | ||
# pylint: disable = unused-argument | ||
padded = ScalarOp(self.num_qubits * (2,)).compose( | ||
SparsePauliOp(other.generators, copy=False, ignore_pauli_phase=True), qargs | ||
) | ||
generators = self.generators + padded.paulis | ||
rates = np.concatenate([self.rates, other.rates]) | ||
return PauliLindbladError(generators, rates) | ||
|
||
def power(self, n: float) -> PauliLindbladError: | ||
return PauliLindbladError(self.generators, n * self.rates) | ||
|
||
def inverse(self) -> PauliLindbladError: | ||
"""Return the inverse (non-CPTP) channel""" | ||
return PauliLindbladError(self.generators, -self.rates) | ||
|
||
def simplify( | ||
self, atol: float | None = None, rtol: float | None = None | ||
) -> "PauliLindbladError": | ||
"""Simplify PauliList by combining duplicates and removing zeros. | ||
Args: | ||
atol (float): Optional. Absolute tolerance for checking if | ||
coefficients are zero (Default: 1e-8). | ||
rtol (float): Optional. relative tolerance for checking if | ||
coefficients are zero (Default: 1e-5). | ||
Returns: | ||
SparsePauliOp: the simplified SparsePauliOp operator. | ||
""" | ||
if atol is None: | ||
atol = self.atol | ||
if rtol is None: | ||
rtol = self.rtol | ||
# Remove identity terms | ||
non_iden = np.any(np.logical_or(self.generators.z, self.generators.x), axis=1) | ||
simplified = SparsePauliOp( | ||
self.generators[non_iden], | ||
self.rates[non_iden], | ||
copy=False, | ||
ignore_pauli_phase=True, | ||
).simplify(atol=atol, rtol=rtol) | ||
return PauliLindbladError(simplified.paulis, simplified.coeffs.real) | ||
|
||
def subsystem_errors(self) -> list[tuple[PauliLindbladError, tuple[int, ...]]]: | ||
"""Return a list errors for the subsystem decomposed error. | ||
.. note:: | ||
This uses a greedy algorithm to find the largest non-identity subsystem | ||
Pauli, checks if its non identity terms are covered by any previously | ||
selected Pauli's, and if not adds it to list of covering subsystems. | ||
This is repeated until no generators remain. | ||
In terms of the number of Pauli terms this has runtime | ||
`O(num_terms * num_coverings)`, | ||
which in the worst case is `O(num_terms ** 2)`. | ||
Returns: | ||
A list of pairs of component PauliLindbladErrors and subsystem indices for the | ||
that decompose the current errors. | ||
""" | ||
# Find non-identity paulis we wish to cover | ||
paulis = self.generators | ||
non_iden = np.logical_or(paulis.z, paulis.x) | ||
|
||
# Mask to exclude generator terms that are trivial (identities) | ||
non_trivial = np.any(non_iden, axis=1) | ||
|
||
# Paulis that aren't covered yet | ||
uncovered = np.arange(non_iden.shape[0])[non_trivial] | ||
|
||
# Indices that cover each Pauli | ||
# Note that trivial terms will be left at -1 | ||
covered = -1 * np.ones(non_iden.shape[0], dtype=int) | ||
coverings = [] | ||
|
||
# In general finding optimal coverings is NP-hard (I think?) | ||
# so we do a heuristic of just greedily finding the largest | ||
# pauli that isn't covered, and checking if it is covered | ||
# by any previous coverings, if not adding it to coverings | ||
# and repeat until we run out of paulis | ||
while uncovered.size: | ||
imax = np.argmax(np.sum(non_iden[uncovered], axis=1)) | ||
rmax = uncovered[imax] | ||
add_covering = True | ||
for rcov in coverings: | ||
if np.all(non_iden[rcov][non_iden[rmax]]): | ||
add_covering = False | ||
covered[rmax] = rcov | ||
break | ||
if add_covering: | ||
covered[rmax] = rmax | ||
coverings.append(rmax) | ||
uncovered = uncovered[uncovered != rmax] | ||
|
||
# Extract subsystem errors and qinds of non-identity terms | ||
sub_errors = [] | ||
for cover in coverings: | ||
pinds = covered == cover | ||
qinds = np.any(non_iden[pinds], axis=0) | ||
sub_z = paulis.z[pinds][:, qinds] | ||
sub_x = paulis.x[pinds][:, qinds] | ||
sub_gens = PauliList.from_symplectic(sub_z, sub_x) | ||
sub_err = PauliLindbladError(sub_gens, self.rates[pinds]) | ||
sub_qubits = tuple(np.where(qinds)[0]) | ||
sub_errors.append((sub_err, sub_qubits)) | ||
|
||
return sub_errors | ||
|
||
def to_pauli_error(self, simplify: bool = True) -> PauliError: | ||
"""Convert to a PauliError operator. | ||
.. note:: | ||
If this objects represents an non-CPTP inverse channel with negative | ||
rates the returned "probabilities" will be a quasi-probability | ||
distribution containing negative values. | ||
Args: | ||
simplify: If True call :meth:`~.PauliError.simplify` each single | ||
Pauli channel composition to reduce the number of duplicate terms. | ||
Returns: | ||
The :class:`~.PauliError` of the current Pauli channel. | ||
""" | ||
chan_z = np.zeros((1, self.num_qubits), dtype=bool) | ||
chan_x = np.zeros_like(chan_z) | ||
chan_p = np.ones(1, dtype=float) | ||
for term_z, term_x, term_r in zip(self.generators.z, self.generators.x, self.rates): | ||
term_p = 0.5 - 0.5 * np.exp(-2 * term_r) | ||
chan_z = np.concatenate([chan_z, np.logical_xor(chan_z, term_z)], axis=0) | ||
chan_x = np.concatenate([chan_x, chan_x ^ term_x]) | ||
chan_p = np.concatenate([(1 - term_p) * chan_p, term_p * chan_p]) | ||
if simplify: | ||
error_op = PauliError(PauliList.from_symplectic(chan_z, chan_x), chan_p).simplify() | ||
chan_z, chan_x, chan_p = ( | ||
error_op.paulis.z, | ||
error_op.paulis.x, | ||
error_op.probabilities, | ||
) | ||
return PauliError(PauliList.from_symplectic(chan_z, chan_x), chan_p) | ||
|
||
def to_quantum_error(self) -> QuantumError: | ||
"""Convert to a general QuantumError object.""" | ||
if not self.is_cptp(): | ||
raise NoiseError("Cannot convert non-CPTP PauliLindbladError to a QuantumError") | ||
return self.to_pauli_error().to_quantum_error() | ||
|
||
def to_quantumchannel(self) -> SuperOp: | ||
"""Convert to a dense N-qubit QuantumChannel""" | ||
return self.to_pauli_error().to_quantumchannel() | ||
|
||
def to_dict(self): | ||
"""Return the current error as a dictionary.""" | ||
# Assemble noise circuits for Aer simulator | ||
qubits = list(range(self.num_qubits)) | ||
instructions = [ | ||
[{"name": "pauli", "params": [pauli.to_label()], "qubits": qubits}] | ||
for pauli in self.generators | ||
] | ||
# Construct error dict | ||
error = { | ||
"type": "plerror", | ||
"id": self.id, | ||
"operations": [], | ||
"instructions": instructions, | ||
"rates": self.rates.tolist(), | ||
} | ||
return error | ||
|
||
@staticmethod | ||
def from_dict(error: dict) -> PauliLindbladError: | ||
"""Implement current error from a dictionary.""" | ||
# check if dictionary | ||
if not isinstance(error, dict): | ||
raise NoiseError("error is not a dictionary") | ||
# check expected keys "type, id, operations, instructions, probabilities" | ||
if ( | ||
("type" not in error) | ||
or ("id" not in error) | ||
or ("operations" not in error) | ||
or ("instructions" not in error) | ||
or ("rates" not in error) | ||
): | ||
raise NoiseError("error dictionary not containing expected keys") | ||
instructions = error["instructions"] | ||
rates = error["rates"] | ||
if len(instructions) != len(rates): | ||
raise NoiseError("rates not matching with instructions") | ||
# parse instructions and turn to noise_ops | ||
generators = [] | ||
for inst in instructions: | ||
if len(inst) != 1 or inst[0]["name"] != "pauli": | ||
raise NoiseError("Invalid PauliLindbladError dict") | ||
generators.append(inst[0]["params"][0]) | ||
return PauliLindbladError(generators, rates) |
8 changes: 8 additions & 0 deletions
8
releasenotes/notes/pauli-lindblad-error-2fccae840ceec2aa.yaml
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,8 @@ | ||
--- | ||
features: | ||
- | | ||
Adds a new :class:`.PauliLindbladError` quantum error subclass. | ||
This class represents a Pauli error quantum channel generated by | ||
Pauli-Lindblad dissipator terms. This allows for more efficient | ||
representation and error sampling for large qubit Pauli channels | ||
generated by sparse Pauli-lindblad terms. |
Oops, something went wrong.