Check
- 'Semantic Instance Segmentation with a Discriminative Loss Function'
- 'ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation'
- 'Towards End-to-End Lane Detection: an Instance Segmentation'
-
instance_seg_models_enet_train.py
Main train model script. -
batch_norm.py
class for using batch normalization. -
config_etc.py
for configure some params to train or something. -
DataGen.py
class for create data batches or load images. -
method.py
methods like convolution function, etc.. -
placeHolders.py
place holder class for some params. using tf.placeholder(...) -
sementic_seg_models_xxx.py
tensorflow train architecture for semantic segmentation.
this models use A1(original images) for segmentation.
the output(predict_train) images will be saved in _A1_predict_XXX folder.
'xxx' means architecture of models.
-deeplabv1, enet, etc..
semantic_seg_apply_crf.py
crf applied images in A1_predict and save image into A1_predict_crf
A1
This folder is original Data set for Instance segmentation.
_centers.png : Center of each leaf.
_fg.png : Sementic segmentation label.
_rgb.png : instance segmentation label.