Skip to content

hololee/cvpppnet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

30 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Instruction

Check

  • 'Semantic Instance Segmentation with a Discriminative Loss Function'
  • 'ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation'
  • 'Towards End-to-End Lane Detection: an Instance Segmentation'

File information

  • instance_seg_models_enet_train.py
    Main train model script.

  • batch_norm.py
    class for using batch normalization.

  • config_etc.py
    for configure some params to train or something.

  • DataGen.py
    class for create data batches or load images.

  • method.py
    methods like convolution function, etc..

  • placeHolders.py
    place holder class for some params. using tf.placeholder(...)

  • sementic_seg_models_xxx.py
    tensorflow train architecture for semantic segmentation.
    this models use A1(original images) for segmentation.
    the output(predict_train) images will be saved in _A1_predict_XXX folder.

'xxx' means architecture of models.
 -deeplabv1, enet, etc..
  • semantic_seg_apply_crf.py
    crf applied images in A1_predict and save image into A1_predict_crf

Data folder information

  • A1
    This folder is original Data set for Instance segmentation.
_centers.png : Center of each leaf.
_fg.png : Sementic segmentation label.
_rgb.png : instance segmentation label.

About

Training cvppp dataset on multiple task.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages