-
-
Notifications
You must be signed in to change notification settings - Fork 404
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add cuDFInterface to work with cuDF GPU dataframes and cupy support f…
…or XArrayInterface (#3982)
- Loading branch information
1 parent
f8c1cd6
commit 83490d7
Showing
8 changed files
with
506 additions
and
19 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,340 @@ | ||
from __future__ import absolute_import | ||
|
||
import sys | ||
import warnings | ||
|
||
try: | ||
import itertools.izip as zip | ||
except ImportError: | ||
pass | ||
|
||
from itertools import product | ||
|
||
import numpy as np | ||
|
||
from .. import util | ||
from ..dimension import dimension_name | ||
from ..element import Element | ||
from ..ndmapping import NdMapping, item_check, sorted_context | ||
from .interface import DataError, Interface | ||
from .pandas import PandasInterface | ||
|
||
|
||
class cuDFInterface(PandasInterface): | ||
""" | ||
The cuDFInterface allows a Dataset objects to wrap a cuDF | ||
DataFrame object. Using cuDF allows working with columnar | ||
data on a GPU. Most operations leave the data in GPU memory, | ||
however to plot the data it has to be loaded into memory. | ||
The cuDFInterface covers almost the complete API exposed | ||
by the PandasInterface with two notable exceptions: | ||
1) Aggregation and groupby do not have a consistent sort order | ||
(see https://github.com/rapidsai/cudf/issues/4237) | ||
3) Not all functions can be easily applied to a cuDF so | ||
some functions applied with aggregate and reduce will not work. | ||
""" | ||
|
||
datatype = 'cuDF' | ||
|
||
types = () | ||
|
||
@classmethod | ||
def loaded(cls): | ||
return 'cudf' in sys.modules | ||
|
||
@classmethod | ||
def applies(cls, obj): | ||
if not cls.loaded(): | ||
return False | ||
import cudf | ||
return isinstance(obj, (cudf.DataFrame, cudf.Series)) | ||
|
||
@classmethod | ||
def init(cls, eltype, data, kdims, vdims): | ||
import cudf | ||
import pandas as pd | ||
|
||
element_params = eltype.param.objects() | ||
kdim_param = element_params['kdims'] | ||
vdim_param = element_params['vdims'] | ||
|
||
if isinstance(data, (cudf.Series, pd.Series)): | ||
data = data.to_frame() | ||
|
||
if not isinstance(data, cudf.DataFrame): | ||
data, _, _ = PandasInterface.init(eltype, data, kdims, vdims) | ||
data = cudf.from_pandas(data) | ||
|
||
ncols = len(data.columns) | ||
index_names = [data.index.name] | ||
if index_names == [None]: | ||
index_names = ['index'] | ||
if eltype._auto_indexable_1d and ncols == 1 and kdims is None: | ||
kdims = list(index_names) | ||
|
||
if isinstance(kdim_param.bounds[1], int): | ||
ndim = min([kdim_param.bounds[1], len(kdim_param.default)]) | ||
else: | ||
ndim = None | ||
nvdim = vdim_param.bounds[1] if isinstance(vdim_param.bounds[1], int) else None | ||
if kdims and vdims is None: | ||
vdims = [c for c in data.columns if c not in kdims] | ||
elif vdims and kdims is None: | ||
kdims = [c for c in data.columns if c not in vdims][:ndim] | ||
elif kdims is None: | ||
kdims = list(data.columns[:ndim]) | ||
if vdims is None: | ||
vdims = [d for d in data.columns[ndim:((ndim+nvdim) if nvdim else None)] | ||
if d not in kdims] | ||
elif kdims == [] and vdims is None: | ||
vdims = list(data.columns[:nvdim if nvdim else None]) | ||
|
||
# Handle reset of index if kdims reference index by name | ||
for kd in kdims: | ||
kd = dimension_name(kd) | ||
if kd in data.columns: | ||
continue | ||
if any(kd == ('index' if name is None else name) | ||
for name in index_names): | ||
data = data.reset_index() | ||
break | ||
if any(isinstance(d, (np.int64, int)) for d in kdims+vdims): | ||
raise DataError("cudf DataFrame column names used as dimensions " | ||
"must be strings not integers.", cls) | ||
|
||
if kdims: | ||
kdim = dimension_name(kdims[0]) | ||
if eltype._auto_indexable_1d and ncols == 1 and kdim not in data.columns: | ||
data = data.copy() | ||
data.insert(0, kdim, np.arange(len(data))) | ||
|
||
for d in kdims+vdims: | ||
d = dimension_name(d) | ||
if len([c for c in data.columns if c == d]) > 1: | ||
raise DataError('Dimensions may not reference duplicated DataFrame ' | ||
'columns (found duplicate %r columns). If you want to plot ' | ||
'a column against itself simply declare two dimensions ' | ||
'with the same name. '% d, cls) | ||
return data, {'kdims':kdims, 'vdims':vdims}, {} | ||
|
||
|
||
@classmethod | ||
def range(cls, dataset, dimension): | ||
column = dataset.data[dataset.get_dimension(dimension, strict=True).name] | ||
if column.dtype.kind == 'O': | ||
return np.NaN, np.NaN | ||
else: | ||
return (column.min(), column.max()) | ||
|
||
|
||
@classmethod | ||
def values(cls, dataset, dim, expanded=True, flat=True, compute=True, | ||
keep_index=False): | ||
dim = dataset.get_dimension(dim, strict=True) | ||
data = dataset.data[dim.name] | ||
if not expanded: | ||
data = data.unique() | ||
return data.to_array() if compute else data | ||
elif keep_index: | ||
return data | ||
elif compute: | ||
return data.to_array() | ||
return data | ||
|
||
|
||
@classmethod | ||
def groupby(cls, dataset, dimensions, container_type, group_type, **kwargs): | ||
# Get dimensions information | ||
dimensions = [dataset.get_dimension(d).name for d in dimensions] | ||
kdims = [kdim for kdim in dataset.kdims if kdim not in dimensions] | ||
|
||
# Update the kwargs appropriately for Element group types | ||
group_kwargs = {} | ||
group_type = dict if group_type == 'raw' else group_type | ||
if issubclass(group_type, Element): | ||
group_kwargs.update(util.get_param_values(dataset)) | ||
group_kwargs['kdims'] = kdims | ||
group_kwargs.update(kwargs) | ||
|
||
# Propagate dataset | ||
group_kwargs['dataset'] = dataset.dataset | ||
|
||
# Find all the keys along supplied dimensions | ||
keys = product(*(dataset.data[dimensions[0]].unique() for d in dimensions)) | ||
|
||
# Iterate over the unique entries applying selection masks | ||
grouped_data = [] | ||
for unique_key in util.unique_iterator(keys): | ||
group_data = dataset.select(**dict(zip(dimensions, unique_key))) | ||
if not len(group_data): | ||
continue | ||
group_data = group_type(group_data, **group_kwargs) | ||
grouped_data.append((unique_key, group_data)) | ||
|
||
if issubclass(container_type, NdMapping): | ||
with item_check(False), sorted_context(False): | ||
kdims = [dataset.get_dimension(d) for d in dimensions] | ||
return container_type(grouped_data, kdims=kdims) | ||
else: | ||
return container_type(grouped_data) | ||
|
||
|
||
@classmethod | ||
def select_mask(cls, dataset, selection): | ||
""" | ||
Given a Dataset object and a dictionary with dimension keys and | ||
selection keys (i.e tuple ranges, slices, sets, lists or literals) | ||
return a boolean mask over the rows in the Dataset object that | ||
have been selected. | ||
""" | ||
mask = None | ||
for dim, sel in selection.items(): | ||
if isinstance(sel, tuple): | ||
sel = slice(*sel) | ||
arr = cls.values(dataset, dim, compute=False) | ||
if util.isdatetime(arr) and util.pd: | ||
try: | ||
sel = util.parse_datetime_selection(sel) | ||
except: | ||
pass | ||
|
||
new_masks = [] | ||
if isinstance(sel, slice): | ||
with warnings.catch_warnings(): | ||
warnings.filterwarnings('ignore', r'invalid value encountered') | ||
if sel.start is not None: | ||
new_masks.append(sel.start <= arr) | ||
if sel.stop is not None: | ||
new_masks.append(arr < sel.stop) | ||
if not new_masks: | ||
continue | ||
new_mask = new_masks[0] | ||
for imask in new_masks[1:]: | ||
new_mask &= imask | ||
elif isinstance(sel, (set, list)): | ||
for v in sel: | ||
new_masks.append(arr==v) | ||
if not new_masks: | ||
continue | ||
new_mask = new_masks[0] | ||
for imask in new_masks[1:]: | ||
new_mask |= imask | ||
elif callable(sel): | ||
new_mask = sel(arr) | ||
else: | ||
new_mask = arr == sel | ||
|
||
if mask is None: | ||
mask = new_mask | ||
else: | ||
mask &= new_mask | ||
return mask | ||
|
||
|
||
@classmethod | ||
def select(cls, dataset, selection_mask=None, **selection): | ||
df = dataset.data | ||
if selection_mask is None: | ||
selection_mask = cls.select_mask(dataset, selection) | ||
|
||
indexed = cls.indexed(dataset, selection) | ||
if selection_mask is not None: | ||
df = df[selection_mask] | ||
if indexed and len(df) == 1 and len(dataset.vdims) == 1: | ||
return df[dataset.vdims[0].name].iloc[0] | ||
return df | ||
|
||
|
||
@classmethod | ||
def concat_fn(cls, dataframes, **kwargs): | ||
import cudf | ||
return cudf.concat(dataframes, **kwargs) | ||
|
||
|
||
@classmethod | ||
def add_dimension(cls, dataset, dimension, dim_pos, values, vdim): | ||
data = dataset.data.copy() | ||
if dimension.name not in data: | ||
data[dimension.name] = values | ||
return data | ||
|
||
|
||
@classmethod | ||
def aggregate(cls, dataset, dimensions, function, **kwargs): | ||
data = dataset.data | ||
cols = [d.name for d in dataset.kdims if d in dimensions] | ||
vdims = dataset.dimensions('value', label='name') | ||
reindexed = data[cols+vdims] | ||
agg = function.__name__ | ||
if len(dimensions): | ||
agg_map = {'amin': 'min', 'amax': 'max'} | ||
agg = agg_map.get(agg, agg) | ||
grouped = reindexed.groupby(cols, sort=False) | ||
if not hasattr(grouped, agg): | ||
raise ValueError('%s aggregation is not supported on cudf DataFrame.' % agg) | ||
df = getattr(grouped, agg)().reset_index() | ||
else: | ||
agg_map = {'amin': 'min', 'amax': 'max', 'size': 'count'} | ||
agg = agg_map.get(agg, agg) | ||
if not hasattr(reindexed, agg): | ||
raise ValueError('%s aggregation is not supported on cudf DataFrame.' % agg) | ||
agg = getattr(reindexed, agg)() | ||
data = dict(((col, [v]) for col, v in zip(agg.index, agg.to_array()))) | ||
df = util.pd.DataFrame(data, columns=list(agg.index)) | ||
|
||
dropped = [] | ||
for vd in vdims: | ||
if vd not in df.columns: | ||
dropped.append(vd) | ||
return df, dropped | ||
|
||
|
||
@classmethod | ||
def iloc(cls, dataset, index): | ||
import cudf | ||
|
||
rows, cols = index | ||
scalar = False | ||
columns = list(dataset.data.columns) | ||
if isinstance(cols, slice): | ||
cols = [d.name for d in dataset.dimensions()][cols] | ||
elif np.isscalar(cols): | ||
scalar = np.isscalar(rows) | ||
cols = [dataset.get_dimension(cols).name] | ||
else: | ||
cols = [dataset.get_dimension(d).name for d in index[1]] | ||
col_index = [columns.index(c) for c in cols] | ||
if np.isscalar(rows): | ||
rows = [rows] | ||
|
||
if scalar: | ||
return dataset.data[cols[0]].iloc[rows[0]] | ||
result = dataset.data.iloc[rows, col_index] | ||
|
||
# cuDF does not handle single rows and cols indexing correctly | ||
# as of cudf=0.10.0 so we have to convert Series back to DataFrame | ||
if isinstance(result, cudf.Series): | ||
if len(cols) == 1: | ||
result = result.to_frame(cols[0]) | ||
else: | ||
result = result.to_frame().T | ||
return result | ||
|
||
|
||
@classmethod | ||
def sort(cls, dataset, by=[], reverse=False): | ||
cols = [dataset.get_dimension(d, strict=True).name for d in by] | ||
return dataset.data.sort_values(by=cols, ascending=not reverse) | ||
|
||
|
||
@classmethod | ||
def dframe(cls, dataset, dimensions): | ||
if dimensions: | ||
return dataset.data[dimensions].to_pandas() | ||
else: | ||
return dataset.data.to_pandas() | ||
|
||
|
||
Interface.register(cuDFInterface) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.